## **Polar Coordinates**

We've been using the Cartesian (rectangular) coordinate system to graph. Another useful coordinate system is the **polar coordinate system** which uses distance and direction to specify the location of a point in the plane. The system is based on a point, called the **pole** (or origin) and a ray drawn in the direction of the x-axis, called the **polar axis**. P(x, y)

- r is the distance from O to P.
- heta is the angle between the polar axis and the segment  $\overline{OP}$  .



 $\theta$  is positive if measures in a counterclockwise direction from the polar axis or negative if measured in a clockwise direction. If r is

negative, then P is the point that is |r| units from the pole in the direction opposite to that given by  $\theta$ .



**<u>Ex I</u>**: Plot the given points.

a) 
$$\left(2,\frac{2\pi}{3}\right)$$
 b)  $\left(1,-\frac{\pi}{4}\right)$ 

c) 
$$(4,3\pi)$$
 d)  $\left(-3,\frac{\pi}{6}\right)$ 

Note: The coordinates  $(r, \theta)$  and  $(-r, \theta + \pi)$  represent the same point. Also keep in mind that because of the coterminal angles, each point has infinitely many representations.  $P(r, \theta)$  is the same as:



**Ex2**: Graph  $Q\left(1, \frac{5\pi}{4}\right)$ . Find two other polar coordinate representations with r > 0, and two with r < 0.

#### **RELATIONSHIP BETWEEN POLAR AND RECTANGULAR COORDINATES**

1. To change from polar to rectangular coordinates, use the formulas

 $x = r \cos \theta$  and  $y = r \sin \theta$ 

2. To change from rectangular to polar coordinates, use the formulas

$$r^2 = x^2 + y^2$$
 and  $\tan \theta = \frac{y}{x}$   $(x \neq 0)$ 

<u>Note</u>: These equations do not uniquely determine r or  $\theta$ . Check to make sure you are in the correct quadrant.

**<u>Ex3</u>**: Find the rectangular coordinates of the point  $\left(-4, \frac{3\pi}{4}\right)$ .

**<u>Ex4</u>**: Find the polar coordinates of the point  $(-1, -\sqrt{3})$ .

**<u>Ex5</u>**: Express the following equations in polar coordinates.

a) x = 2

**b)** 
$$x^2 + y^2 = 9$$

**<u>Ex6</u>**: Express the following equations in rectangular coordinates.

a) 
$$r = \frac{4}{1 + \sin \theta}$$

b)  $\tan \theta = 1$ 

#### \* Polar Curves

The graph of a polar equation  $r = f(\theta)$ , or more generally  $F(r, \theta) = 0$ , consists of all points *P* that have at least one polar representation  $(r, \theta)$  whose coordinates satisfy the equation.



## \* Tangents to Polar Curves

To find a tangent line to a polar curve  $r = f(\theta)$ , we regard  $\theta$  as a parameter and write its parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta$$
  $y = r \sin \theta = f(\theta) \sin \theta$ 

Then using the method for finding slopes of parametric curves (from Calculus III) and the Product Rule, we have

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Note:  $\frac{dy}{dx} \neq \frac{df}{d\theta}$ 

Notice that if we are looking for tangent lines at the pole, then r = 0 and the equation above simplifies to:

$$\frac{dy}{dx} = \tan \theta$$
 if  $\frac{dr}{d\theta} \neq 0$ 

**Ex9**: Find the slope of the tangent line to  $r = 1 - \cos \theta$  at  $\theta$ .

# \* Area in Polar Coordinates

Recall the formula for the area of a sector:  $A = \frac{1}{2}r^2\theta$ 

Now suppose that we want to find the area of the shaded region on the given graph where f is positive and continuous and  $0 < b - a \le 2\pi$ .

Divide [a,b] into subintervals of equal width  $\Delta\theta$ . Then:

$$\Delta A_{i} \approx \frac{1}{2} \left[ f\left(\theta_{i}^{*}\right) \right]^{2} \Delta \theta$$

$$A \approx \sum_{i=1}^{n} \frac{1}{2} \left[ f\left(\theta_{i}^{*}\right) \right]^{2} \Delta \theta$$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} \left[ f\left(\theta_{i}^{*}\right) \right]^{2} \Delta \theta = \int_{a}^{b} \frac{1}{2} \left[ f\left(\theta\right) \right]^{2} d\theta$$

This is often written as:

**Ex10**: Find the area of the region in the plane enclosed by the polar rose  $r = 2\cos(2\theta)$ .

 $A = \int_{a}^{b} r^{2} d\theta$ 





**ExII**: Find the area of the region that lies inside the circle r=1 and outside the cardioid  $r=1+\cos\theta$ .

## \* Length of the Polar Curves

To find the length of a polar curve  $r = f(\theta)$ ,  $a \le \theta \le b$ , we regard  $\theta$  as a parameter and write the parametric equations of the curve as

 $x = r \cos \theta = f(\theta) \cos \theta$   $y = r \sin \theta = f(\theta) \sin \theta$ 

Using the Product Rule and differentiating with respect to  $\theta$ , we obtain

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\right)^2 \cos^2\theta - 2r\frac{dr}{d\theta}\cos\theta \sin\theta + r^2\sin^2\theta + \left(\frac{dr}{d\theta}\right)^2 \sin^2\theta + 2r\frac{dr}{d\theta}\sin\theta \cos\theta + r^2\cos^2\theta = \left(\frac{dr}{d\theta}\right)^2 + r^2$$

Assuming that f' is continuous, we can use what we learned in calculus III and find:

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} \, d\theta$$

Therefore the length of a curve with polar equation  $r = f(\theta)$ ,  $a \le \theta \le b$ , is

$$L = \int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} \, d\theta$$

**Ex12**: Find the length of the cardioid  $r = 1 + \cos \theta$ .