Polar Coordinates

We've been using the Cartesian (rectangular) coordinate system to graph. Another useful coordinate system is the polar coordinate system which uses distance and direction to specify the location of a point in the plane. The system is based on a point, called the pole (or origin) and a ray drawn in the direction of the x-axis, called the polar axis.
r is the distance from O to P.
θ is the angle between the polar axis and the segment $\overline{O P}$.
θ is positive if measures in a counterclockwise direction from the polar axis or negative if measured in a clockwise direction. If r is
 negative, then P is the point that is $|r|$ units from the pole in the direction opposite to that given by θ.

ExI: Plot the given points.
a) $\left(2, \frac{2 \pi}{3}\right)$
b) $\left(1,-\frac{\pi}{4}\right)$
c) $(4,3 \pi)$
d) $\left(-3, \frac{\pi}{6}\right)$

Note: The coordinates (r, θ) and $(-r, \theta+\pi)$ represent the same point. Also keep in mind that because of the coterminal angles, each point has infinitely many representations. $P(r, \theta)$ is the same as:

$$
P(r, \theta+2 n \pi) \quad \text { and } \quad P(-r, \theta+(2 n+1) \pi)
$$

Ex2: Graph $Q\left(1, \frac{5 \pi}{4}\right)$. Find two other polar coordinate representations with $r>0$, and two with $r<0$.

RELATIONSHIP BETWEEN POLAR AND RECTANGULAR COORDINATES

1. To change from polar to rectangular coordinates, use the formulas

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

2. To change from rectangular to polar coordinates, use the formulas

$$
r^{2}=x^{2}+y^{2} \quad \text { and } \quad \tan \theta=\frac{y}{x} \quad(x \neq 0)
$$

Note: These equations do not uniquely determine r or θ. Check to make sure you are in the correct quadrant.

Ex3: Find the rectangular coordinates of the point $\left(-4, \frac{3 \pi}{4}\right)$.

Ex4: Find the polar coordinates of the point $(-1,-\sqrt{3})$.

Ex5: Express the following equations in polar coordinates.
a) $x=2$
b) $x^{2}+y^{2}=9$

Ex6: Express the following equations in rectangular coordinates.
a) $r=\frac{4}{1+\sin \theta}$
b) $\tan \theta=1$

* Polar Curves

The graph of a polar equation $r=f(\theta)$, or more generally $F(r, \theta)=0$, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

SOME COMMON POLAR CURVES
Circles and Spiral
Limaçons
$r=a \pm b \sin \theta$
$r=a \pm b \cos \theta$
($a>0, b>0$)
Orientation depends on
(sine trigonometric function cosine) and the sign of b.
$r=a \sin n \theta$
$r=a \cos n \theta$
n-leaved if n is odd
2n-leaved if n is even

Lemniscates
Figure-eight-shaped curves

* Tangents to Polar Curves

To find a tangent line to a polar curve $r=f(\theta)$, we regard θ as a parameter and write its parametric equations as

$$
x=r \cos \theta=f(\theta) \cos \theta \quad y=r \sin \theta=f(\theta) \sin \theta
$$

Then using the method for finding slopes of parametric curves (from Calculus III) and the Product Rule, we have

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Note: $\frac{d y}{d x} \neq \frac{d f}{d \theta}$
Notice that if we are looking for tangent lines at the pole, then $r=0$ and the equation above simplifies to:

$$
\frac{d y}{d x}=\tan \theta \quad \text { if } \quad \frac{d r}{d \theta} \neq 0
$$

Ex9: Find the slope of the tangent line to $r=1-\cos \theta$ at θ.

* Area in Polar Coordinates

Recall the formula for the area of a sector: $A=\frac{1}{2} r^{2} \theta$

Now suppose that we want to find the area of the shaded region on the given graph where f is positive and continuous and $0<b-a \leq 2 \pi$.

Divide $[a, b]$ into subintervals of equal width $\Delta \theta$. Then:

$$
\begin{aligned}
& \Delta A_{i} \approx \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta \\
& A \approx \sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta \\
& A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta
\end{aligned}
$$

This is often written as:

$$
A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta
$$

ExI0: Find the area of the region in the plane enclosed by the polar rose $r=2 \cos (2 \theta)$.

ExII: Find the area of the region that lies inside the circle $r=1$ and outside the cardioid $r=1+\cos \theta$.

* Length of the Polar Curves

To find the length of a polar curve $r=f(\theta), a \leqslant \theta \leqslant b$, we regard θ as a parameter and write the parametric equations of the curve as

$$
x=r \cos \theta=f(\theta) \cos \theta \quad y=r \sin \theta=f(\theta) \sin \theta
$$

Using the Product Rule and differentiating with respect to θ, we obtain

$$
\frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta-r \sin \theta \quad \frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta
$$

$$
\begin{aligned}
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}= & \left(\frac{d r}{d \theta}\right)^{2} \cos ^{2} \theta-2 r \frac{d r}{d \theta} \cos \theta \sin \theta+r^{2} \sin ^{2} \theta \\
& +\left(\frac{d r}{d \theta}\right)^{2} \sin ^{2} \theta+2 r \frac{d r}{d \theta} \sin \theta \cos \theta+r^{2} \cos ^{2} \theta \\
= & \left(\frac{d r}{d \theta}\right)^{2}+r^{2}
\end{aligned}
$$

Assuming that f^{\prime} is continuous, we can use what we learned in calculus III and find:

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta
$$

Therefore the length of a curve with polar equation $r=f(\theta), a \leqslant \theta \leqslant b$, is

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

ExI2: Find the length of the cardioid $r=1+\cos \theta$.

