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Strategy for Testing Series 

Let’s do a brief review of THE LIST of all the tests we have introduced for determining convergence and 

how to decide which test to use.  

THE LIST: (1.) The geometric series converges when 1r  .  (2.) The harmonic series diverges.  (3.) 

Telescoping series.  (4.) The integral test.  (5.) The test for divergence. (6.) The p-series converges for 

1p  . (7.) The comparison test (weak).  (8.) The limit comparison test (stronger).  (9.) The alternating 

harmonic series converges.  (10.) The alternating series test.  (11.) The ratio test.  (12.) The root test. 

Let us break down THE LIST by beginning with the four known or famous series: 

 Geometric series:  
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 The Harmonic Series 
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 The Alternating Harmonic Series 
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What if a series is given and you need to determine whether it diverges or converges (conditionally or 

absolutely).  Let 
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We will organize our series using the following chart 
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For Positive Series: 

 The Test for Divergence (easy-weak):  
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Pro-tip: Always check this test first. 
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 The Direct Comparison Test (hard-strong):  
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In table form, if nb  is known and … 
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Pro-tip: Consider whether dropping terms in the numerator or denominator gives a series that 

we know converges or diverges,  
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 The Limit Comparison Test (easy -strong): 
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In table form, if nb  is known and … 
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Pro-tip: Consider whether dropping terms in the numerator or denominator gives a series that 

we know converges or diverges,  
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 The Integral Test (hard-strong): 

 

If  na f n is decreasing, positive and continuous,  
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Pro-tip: Best to use when the other tests fail. 

 

 Telescoping Series (hard- weak): 

 

Use this when the terms can be written as a difference where consecutive-ish terms cancel.  

This often will require the use of partial fractions decomposition, log rules, or trig identities.   

 

Pro-tip: Best to use when the other tests fail. 

 

For series that are not (necessarily) positive series: 

 Alternating Series Test (easy-weak): 

For series of the form  
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Pro-tip: It is the last note that makes this weak.  If convergent using the Alternating Series Test 

than you still must determine if you have conditional or absolute convergence. 

 

Reminder: Absolute Convergence: If 
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 The Ratio Test (easy -strong): 
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Pro-tip: Best to use when there is a factorial or powers of n. Don’t use with p-series. 
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 The Root Test (easy - weak): 

1 then absolutely-convergent convergent
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Pro-tip: Best to use when the terms have power n (but no other complicating terms).  Don’t use 

with p-series. 

In short: 

1. The Test for Divergence: Unless 0na  , the series diverges. 

2. Geometric series: 
nar converges if 1r  ; otherwise it diverges. 

3. P-series: 
1

pn
 converges if 1p  ; otherwise it diverges. 

4. Series with nonnegative terms: Try the Integral Test, Ratio Test or Root Test. Try 

comparing to a known series with the Comparison Test or the Limit Comparison Test. 

5. Series with some negative terms: Does na converges? If yes, so does na since 

absolute convergence implies convergence. 

6. Alternating series: To show conditional convergence, use the Alternating Series Test 

 na converges if na is decreasing and 0na  .  To show absolute convergence,  

use the Ratio or Root Test. 

 

Summary of how to prioritize your choice of tests 

 EASY HARD 

WEAK  Test for divergence 

 Alternating series test 

 Harmonic series 

 Alternating harmonic series 

 Geometric series 

 P-series 

 Root test 

 

 Telescoping series 

STRONG  Limit comparison test 

 Ratio test 

 

 Comparison test 

 Integral test 

 

 


