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 Alternating Series 

 

A series in which the terms are alternately positive and negative is an alternating series.  Here are 

two examples: 

 

 

 

As you can see, the series could start with a positive or a negative term.  So the nth term of an 

alternating series could be described as: 
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Let’s explore alternating series using a famous example. 

Ex1: The alternating harmonic series:  
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We investigate this question by looking at the sequence of partial sums for the series. In this case, the 

first four terms of the sequence of partial sums and graph are as follows: 
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THE LIST: (1.) The geometric series converges when 1r  .  (2.) The harmonic series diverges.  (3.) 

Telescoping series.  (4.) The integral test.  (5.) The test for divergence. (6.) The p-series converges for 

1p  . (7.) The comparison test (weak).  (8.) The limit comparison test (stronger).  (9.) The alternating 

harmonic series converges. 
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While we only have an intuitive sense that the alternating harmonic series converges, we are beginning 

to see a pattern.   

 

The picture can be formalized with the alternating series test. 

 

A second picture proof is as follows:
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THE LIST: (1.) The geometric series converges when 1r  .  (2.) The harmonic series diverges.  (3.) 

Telescoping series.  (4.) The integral test.  (5.) The test for divergence. (6.) The p-series converges for 

1p  . (7.) The comparison test (weak).  (8.) The limit comparison test (stronger).  (9.) The alternating 

harmonic series converges.  (10.) The alternating series test. 

 Absolute Convergence and the Ratio and Root Test 

 

Ex2: Are the following series convergent or divergent?  If convergent, are they absolutely convergent? 
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Ex3: Is the series  
1
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  convergent or divergent?  If convergent, is it conditionally or 

absolutely convergent? 

 

 

 

 

 

From these examples you can see that it is possible for a series to be convergent but not absolutely 

convergent. Convergence does not provide absolute convergence.  On the other hand … 

 

 

Ex4: Is the following series convergent?  
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Sometimes it can be helpful to represent the various options using 

a flowchart. 
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Recall that if a series converges to a value S, then the remainder is Rn=S-Sn, where Sn is the sum of the 

first n terms of the series. The magnitude of the remainder is the absolute error in approximating S by 

Sn. 

An upper bound on the magnitude of the remainder in an alternating series arises from the following 

observation: When the terms are non-increasing in magnitude, the value of the series is always trapped 

between successive terms of the sequence of partial sums 

 

Theorem: Remainder in Alternating Series 

Let 
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  be a convergent alternating series with terms that are non-increasing in 

magnitude. Let Rn=S-Sn be the remainder in approximating the value of that series by the sum of its 

first n terms. Then 1n nR a 
. In other words, the magnitude of the remainder is less than or equal 

to the magnitude of the first neglected term. 

Ex5: Using power series, you can show that 
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Making a connection: When trying to understand exponential growth, one tool is to look at the growth 

rate.  For example, during the COVID pandemic, we tracked the number of positive cases in 

Washington State. 

Date Cases Weekly Growth Ratio 1n

n

a

a

   

1-Mar 30 
  8-Mar 245 215 

 15-Mar 921 676 3.14 

22-Mar 2234 1313 1.94 

29-Mar 5112 2878 2.19 

5-Apr 8145 3033 1.05 

12-Apr 10360 2215 0.73 

19-Apr 12107 1747 0.79 

26-Apr 13724 1617 0.93 
 

Ratios that are over 1 indicate continued growth and divergence (in the case of COVID that was very 

bad).  Ratios under 1 indicate that growth is slowing and convergence (good).  A ratio of exactly 1 is 

inconclusive leaving the possibility of either convergence or divergence. 

 

 The Ratio and Root Test 

 

THE LIST: (1.) The geometric series converges when 1r  .  (2.) The harmonic series diverges.  (3.) 

Telescoping series.  (4.) The integral test.  (5.) The test for divergence. (6.) The p-series converges for 

1p  . (7.) The comparison test (weak).  (8.) The limit comparison test (stronger).  (9.) The alternating 

harmonic series converges.  (10.) The alternating series test.  (11.) The ratio test. 
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Ex6: Do the following series converge or diverge?  If they converge, is it conditional or absolute 

convergence? 
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Ex7: Show that both convergence and divergence are possible when 1L  by considering the two p-

series (a.) 
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Ex8: Do the following series converge or diverge?  If convergent, is it conditional or absolute? 
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THE LIST: (1.) The geometric series converges when 1r  .  (2.) The harmonic series diverges.  (3.) 

Telescoping series.  (4.) The integral test.  (5.) The test for divergence. (6.) The p-series converges for 

1p  . (7.) The comparison test (weak).  (8.) The limit comparison test (stronger).  (9.) The alternating 

harmonic series converges.  (10.) The alternating series test.  (11.) The ratio test.  (12.) The root test. 
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One final example: You may have wondered what the big deal is with conditionally convergent series?  

Let us explore a mind-blowing example using rearrangements. 

Recall:  
1 1 1 1 1 1 1

1 ... ln 2
2 3 4 5 6 7 8

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mind-blowing conclusion: The same infinite series has two sums if we rearrange the terms! 

More generally, Riemann proved that if an infinite series is conditionally convergent, then there is a 

rearrangement of the series that sums to any real number.  Wow. 


