Sequences

A sequence can be thought of as a list of numbers written in a definite order:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

The number a_{1} is called the first term, a_{2} is the second term, and in general a_{n} is the nth term. We will deal exclusively with infinite sequences and so each term a_{n} will have a successor a_{n+1}.

Notice that for every positive integer n there is a corresponding number a_{n} and so a sequence can be defined as a function whose domain is the set of positive integers. But we usually write a_{n} instead of the function notation $f(n)$ for the value of the function at the number n.

NOTATION The sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is also denoted by

$$
\left\{a_{n}\right\} \quad \text { or } \quad\left\{a_{n}\right\}_{n=1}^{\infty}
$$

When a_{n} is given by a formula we refer to it as the general term of a sequence.

* Arithmetic Sequences

A sequence is arithmetic if there is a common difference, d, between two consecutive terms so $a_{n}=a_{n-1}+d$.

ExI: 2, 5, 8, ...
a) What is d ?
b) What is a_{1} ?
c) What is the $4^{\text {th }}$ term of this sequence?
> The $\mathrm{n}^{\text {th }}$ term of an arithmetic sequence is given by: $a_{n}=a_{1}+(n-1) d$
d) What is the $20^{\text {th }}$ term of this sequence?

* Geometric Sequences

A sequence is geometric if there is a common ratio, r, between two consecutive terms so

$$
r=\frac{a_{n}}{a_{n-1}} \text { or } a_{n}=r a_{n-1} .
$$

Ex2: 3, 6, 12, ...
a) What is r ?
b) What is a_{1} ?
c) What is the $4^{\text {th }}$ term of this sequence?
$>$ The $\mathrm{n}^{\text {th }}$ term of a geometric sequence is given by: $a_{n}=a_{1} r^{n-1}$
d) What is the $20^{\text {th }}$ term of this sequence?

Ex3: Determine whether each sequence is arithmetic or geometric. Find the next term.
a) $1,3,5, \ldots$
b) $2,4,8, \ldots$
c) $6,3,1.5, \ldots$
d) $12,7,2,-3, \ldots$
e) $3,-30,300,-3000, \ldots$

Ex4: What is the general term of the sequence $\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2}, \ldots\right\}$? How else can you present this sequence?

Ex5: Write out the first few terms of the sequence $\left\{(-1)^{n} \sqrt{n}\right\}_{n=3}^{\infty}$

Not all sequences are generated by a formula. For instance the sequence $\{3,1,4,1,5,9,2,6, \ldots\}$ is the digits of π, and there is no formula for the nth digit of π.

A very famous sequence is the Fibonacci sequence: $\{1,1,2,3,5,8,13,21, \ldots\}$ Do you see the pattern?

This sequence is defined recursively. This means the first one or two terms may be given and other terms are found by a pattern applied to the preceding terms.

This sequence arose when the $13^{\text {th }}$-centry Italian mathematician Fibonacci posed a problem concerning the breeding of rabbits. This particular sequence appears in a surprisingly wide variety of situations, particularly in nature. For instance, the number of spiral arms on a sunflower almost always turns out to be a number from this sequence.

Convergent Sequences

Now consider the sequence $a_{n}=\frac{n}{n+1}$ and picture it two ways:

Figure 1

Figure 2

Note that, since a sequence is a function whose domain is the set of positive integers, its graph consists of isolated points with coordinates

$$
\left(1, a_{1}\right) \quad\left(2, a_{2}\right) \quad\left(3, a_{3}\right) \quad \ldots \quad\left(n, a_{n}\right) \quad \ldots
$$

From Figure 1 or Figure 2 it appears that the terms of the sequence $a_{n}=n /(n+1)$ are approaching 1 as n becomes large. In fact, the difference

$$
1-\frac{n}{n+1}=\frac{1}{n+1}
$$

can be made as small as we like by taking n sufficiently large. We indicate this by writing

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

In general, the notation

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

means that the terms of the sequence $\left\{a_{n}\right\}$ approach L as n becomes large. Notice that the following definition of the limit of a sequence is very similar to the definition of a limit of a function at infinity given in Section 2.6.

1 Definition A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Ex6: Find $\lim _{n \rightarrow \infty}(n+1)$.

The following are examples of two sequences that converge to L :

3 Theorem If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.

In particular, since we know that $\lim _{x \rightarrow \infty}\left(1 / x^{r}\right)=0$ when $r>0$, we have

4

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{r}}=0 \quad \text { if } r>0
$$

If a_{n} becomes large as n becomes large, we use the notation $\lim _{n \rightarrow \infty} a_{n}=\infty$.
If $\lim _{n \rightarrow \infty} a_{n}=\infty$, then the sequence $\left\{a_{n}\right\}$ is divergent but in a special way. We say that $\left\{a_{n}\right\}$ diverges to ∞.
The limit laws given in calculus I also hold for the limits of sequences and have similar proofs.
If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n} \\
& \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} c a_{n} \cdot \lim _{n \rightarrow \infty} b_{n} \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}} \text { if } \lim _{n \rightarrow \infty} b_{n} \neq 0 \\
& \lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p} \text { if } p>0 \text { and } a_{n}>0
\end{aligned}
$$

Ex7: Find the following limits.
a) $\lim _{n \rightarrow \infty}(-1)^{n}$
b) $\lim _{n \rightarrow \infty} \frac{n+4}{n+1}$
c) $\lim _{n \rightarrow \infty} \frac{n+\ln n}{n^{2}}$

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If $a_{n} \leqslant b_{n} \leqslant c_{n}$ for $n \geqslant n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

$$
6 \text { Theorem } \quad \text { If } \lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \text {, then } \lim _{n \rightarrow \infty} a_{n}=0 \text {. }
$$

Proof:

FIGURE 7
The sequence $\left\{b_{n}\right\}$ is squeezed between the sequences $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$.

7 Theorem If $\lim _{n \rightarrow \infty} a_{n}=L$ and the function f is continuous at L, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Ex8: Find the following limits.
a) $\quad \lim _{n \rightarrow \infty} e^{\frac{3 n}{n+1}}$
b) $\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{n}}$

Note: $\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{clc}0 & \text { if } & -1<r<1 \\ 1 & \text { if } & r=1 \\ \text { diverges } & \text { if } & r>1 \text { or } r \leq-1\end{array}\right.$

10 Definition A sequence $\left\{a_{n}\right\}$ is called increasing if $a_{n}<a_{n+1}$ for all $n \geqslant 1$, that is, $a_{1}<a_{2}<a_{3}<\cdots$. It is called decreasing if $a_{n}>a_{n+1}$ for all $n \geqslant 1$. A sequence is monotonic if it is either increasing or decreasing.

11 Definition A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1
$$

It is bounded below if there is a number m such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded sequence.

For instance, the sequence $a_{n}=n$ is bounded below $\left(a_{n}>0\right)$ but not above. The sequence $a_{n}=n /(n+1)$ is bounded because $0<a_{n}<1$ for all n.
, Ve know that not every bounded sequence is convergent [for instance, the sequence $a_{n}=(-1)^{n}$ satisfies $-1 \leq a_{n} \leq 1$ but is divergent from Example 7a and not every monotonic sequence is convergent $\left(a_{n}=n \rightarrow \infty\right)$. But if a sequence is both bounded and monotonic, then i nust be convergent. Intuitively you can understand why by looking at the figure. If $\left\{a_{n}\right\}$ is increasing and $a_{n} \leq M$ for all n, then the terms are forced to crowd together and approach some number L.

[^0]Ex9: Verify that $a_{n}=\sqrt{n+1}-\sqrt{n}$ is decreasing and bounded below. Does $\lim _{n \rightarrow \infty} a_{n}$ exist?

Ex10: Calculate $\lim _{n \rightarrow \infty} a_{n}$ if $a_{1}=\sqrt{2}, \quad a_{2}=\sqrt{2 \sqrt{2}}, \quad a_{3}=\sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots$

[^0]: 12 Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

