Sequences

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is called the *first term*, a_2 is the *second term*, and in general a_n is the *nth term*. We will deal exclusively with infinite sequences and so each term a_n will have a successor a_{n+1} .

Notice that for every positive integer *n* there is a corresponding number a_n and so a sequence can be defined as a function whose domain is the set of positive integers. But we usually write a_n instead of the function notation f(n) for the value of the function at the number *n*.

NOTATION The sequence $\{a_1, a_2, a_3, ...\}$ is also denoted by

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

When a_n is given by a formula we refer to it as the general term of a sequence.

* Arithmetic Sequences

A sequence is arithmetic if there is a common difference, d, between two consecutive terms so $a_n = a_{n-1} + d$.

- **<u>Ex1</u>**: 2, 5, 8, ...
 - a) What is d?
 - b) What is a_1 ?
 - c) What is the 4th term of this sequence?
- > The nth term of an arithmetic sequence is given by: $a_n = a_1 + (n-1)d$
 - d) What is the 20th term of this sequence?

***** Geometric Sequences

A sequence is geometric if there is a common ratio, r, between two consecutive terms so

$$r = \frac{a_n}{a_{n-1}}$$
 or $a_n = ra_{n-1}$.

- b) What is a_1 ?
- c) What is the 4th term of this sequence?
- The nth term of a geometric sequence is given by: $a_n = a_1 r^{n-1}$
 - d) What is the 20th term of this sequence?

<u>Ex3</u>: Determine whether each sequence is arithmetic or geometric. Find the next term.

- a) 1, 3, 5, ...
- b) 2, 4, 8, ...
- c) 6, 3, 1.5, ...
- d) 12, 7, 2, -3, ...
- e) 3, -30, 300, -3000, ...

<u>Ex4</u>: What is the general term of the sequence $\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2}, \ldots\right\}$? How else can you present this sequence?

<u>Ex5</u>: Write out the first few terms of the sequence $\{(-1)^n \sqrt{n}\}_{n=3}^{\infty}$

Not all sequences are generated by a formula. For instance the sequence $\{3,1,4,1,5,9,2,6,...\}$ is the digits of π , and there is no formula for the nth digit of π .

A very famous sequence is the *Fibonacci sequence*: $\{1, 1, 2, 3, 5, 8, 13, 21, ...\}$ Do you see the pattern?

This sequence is defined recursively. This means the first one or two terms may be given and other terms are found by a pattern applied to the preceding terms.

This sequence arose when the 13th-centry Italian mathematician Fibonacci posed a problem concerning the breeding of rabbits. This particular sequence appears in a surprisingly wide variety of situations, particularly in nature. For instance, the number of spiral arms on a sunflower almost always turns out to be a number from this sequence.

Convergent Sequences

Now consider the sequence $a_n = \frac{n}{n+1}$ and picture it two ways:

Figure 1

Page **3** of **10**

Note that, since a sequence is a function whose domain is the set of positive integers, its graph consists of isolated points with coordinates

$$(1, a_1)$$
 $(2, a_2)$ $(3, a_3)$... (n, a_n) ...

From Figure 1 or Figure 2 it appears that the terms of the sequence $a_n = n/(n + 1)$ are approaching 1 as *n* becomes large. In fact, the difference

$$1 - \frac{n}{n+1} = \frac{1}{n+1}$$

can be made as small as we like by taking *n* sufficiently large. We indicate this by writing

$$\lim_{n\to\infty}\frac{n}{n+1}=1$$

In general, the notation

$$\lim_{n\to\infty}a_n=L$$

means that the terms of the sequence $\{a_n\}$ approach *L* as *n* becomes large. Notice that the following definition of the limit of a sequence is very similar to the definition of a limit of a function at infinity given in Section 2.6.

1 Definition A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or is **convergent**). Otherwise, we say the sequence **diverges** (or is **divergent**).

Ex6: Find
$$\lim_{n \to \infty} (n+1)$$
.

The following are examples of two sequences that converge to L:

In particular, since we know that $\lim_{x\to\infty} (1/x^r) = 0$ when r > 0, we have

$$\lim_{n \to \infty} \frac{1}{n^r} = 0 \qquad \text{if } r > 0$$

If a_n becomes large as *n* becomes large, we use the notation $\lim_{n\to\infty} a_n = \infty$.

If $\lim_{n\to\infty} a_n = \infty$, then the sequence $\{a_n\}$ is divergent but in a special way. We say that $\{a_n\}$ diverges to ∞ .

The limit laws given in calculus I also hold for the limits of sequences and have similar proofs.

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$ $\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$ $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$ $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$ $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} a_n$ if $\lim_{n \to \infty} b_n \neq 0$ $\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p$ if p > 0 and $a_n > 0$

Ex7: Find the following limits.

a)
$$\lim_{n\to\infty} (-1)^n$$

b)
$$\lim_{n \to \infty} \frac{n+4}{n+1}$$

c)
$$\lim_{n\to\infty} \frac{n+\ln n}{n^2}$$

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 7).

If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

6 Theorem If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

Proof:

FIGURE 7 The sequence $\{b_n\}$ is squeezed between the sequences $\{a_n\}$ and $\{c_n\}$.

7 Theorem If $\lim_{n \to \infty} a_n = L$ and the function f is continuous at L, then $\lim_{n \to \infty} f(a_n) = f(L)$

Ex8: Find the following limits.

a)
$$\lim_{n\to\infty}e^{\frac{3n}{n+1}}$$

b)
$$\lim_{n \to \infty} \sqrt{\frac{n+1}{n}}$$

10 Definition A sequence $\{a_n\}$ is called increasing if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called decreasing if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is monotonic if it is either increasing or decreasing.

11 Definition A sequence $\{a_n\}$ is bounded above if there is a number M such that

$$a_n \leq M$$
 for all $n \geq 1$

It is **bounded below** if there is a number *m* such that

$$n \leq a_n$$
 for all $n \geq 1$

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

For instance, the sequence $a_n = n$ is bounded below $(a_n > 0)$ but not above. The sequence $a_n = n/(n+1)$ is bounded because $0 < a_n < 1$ for all n.

Ve know that not every bounded sequence is convergent [for instance, the sequence $a_n = (-1)^n$ satisfies $-1 \le a_n \le 1$ but is divergent from Example 7a and not every monotonic sequence is convergent $(a_n = n \rightarrow \infty)$. But if a sequence is both bounded and monotonic, then is nust be convergent. Intuitively you can understand why by looking at the figure. If $\{a_n\}$ is increasing and $a_n \le M$ for all n, then the terms are forced to crowd together and approach some number L.

12 Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

<u>Ex9</u>: Verify that $a_n = \sqrt{n+1} - \sqrt{n}$ is decreasing and bounded below. Does $\lim_{n \to \infty} a_n$ exist?

<u>Ex10</u>: Calculate $\lim_{n \to \infty} a_n$ if $a_1 = \sqrt{2}$, $a_2 = \sqrt{2\sqrt{2}}$, $a_3 = \sqrt{2\sqrt{2\sqrt{2}}}$,...