

Test 2aDusty Wilson
Math 220

x= 70.6%

Name: Key

Unfortunately what is little recognized is that the most worthwhile scientific books are those in which the author clearly indicates what he does not know; for an author most hurts his readers by concealing difficulties.

No work = no credit

No calculators

Evariste Galois 1811 – 1832 (French mathematician)

1.) (4 pts) Find the determinant of
$$A = \begin{bmatrix} -1 & -1 & 2 & 3 \\ 2 & -3 & -3 & 1 \\ 3 & 2 & 1 & 3 \\ 1 & 2 & 0 & -1 \end{bmatrix}$$
. Hint: The result is between ± 100 .

$$de+(A) = -1 \begin{vmatrix} -1 & 2 & 3 \\ -3 & -3 & 1 \\ 2 & 1 & 3 \end{vmatrix} + 2 \begin{vmatrix} -1 & 2 & 3 \\ 2 & -3 & 1 \\ 3 & 1 & 3 \end{vmatrix} \begin{vmatrix} -1 & -1 & 2 \\ 2 & -3 & -3 \\ 3 & 2 & 1 \end{vmatrix}$$

$$= -1(41) + 2(37) - 1(34)$$

$$= -4(474) - 34$$

$$\begin{vmatrix} -1 & 2 & 3 \\ -3 & -3 & 1 \\ 2 & 1 & 3 \end{vmatrix} = -1 \begin{vmatrix} -3 & 1 \\ 1 & 3 \end{vmatrix} - 2 \begin{vmatrix} -3 & 1 \\ 2 & 3 \end{vmatrix} + 3 \begin{vmatrix} -3 & -3 \\ 2 & 1 \end{vmatrix}$$

$$= -1 \left(-10 \right) - 2 \left(-11 \right) + 3 \left(-3 \right) = 41$$

$$\frac{42}{2} \begin{vmatrix} -1 & 2 & 3 \\ 2 & -3 & 1 \end{vmatrix} = -1 \begin{vmatrix} -3 & 1 \\ 1 & 3 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 3 & 3 \end{vmatrix} + 3 \begin{vmatrix} 2 & -3 \\ 3 & 1 \end{vmatrix}$$

$$= -1(-10) - 2(3) + 3(11) = 37$$

Page 1 of 2
=
$$-1(1) + 1(11) + 2(13) = 34$$

2.) (4 pts) Prove the given theorem.

Theorem: Consider $\vec{v}_1,...,\vec{v}_m$ in a subspace V of \mathbb{R}^n . Then $\vec{v}_1,...,\vec{v}_m$ are a basis for V iff all vectors $\vec{v} \in V$ can be expressed as a unique linear combination of $\vec{v}_1,...,\vec{v}_m$.

and the state of t

proof

(=) Assume $\vec{V}_{1,m}$, \vec{V}_{m} are a basis for \vec{V}_{n} .

Suppose $\vec{V} \in \vec{V}$ cannot be expressed as a unique linear combination of $\vec{V}_{1,m}$, \vec{V}_{m} .

 $\exists C_{1,n}, cm and d_{1,n}, dm s.k.$ $C_{1}\vec{v}_{1} + \dots + c_{m}\vec{v}_{m} = \vec{v} \text{ and } d_{1}\vec{v}_{1}, \dots, d_{m}\vec{v}_{m} = \vec{v}$ $\Rightarrow (c_{1}-d_{1})\vec{v}_{1} + \dots + (c_{m}-d_{m})\vec{v}_{m} = \vec{o}$

Since $\vec{V}_{1,m}$, \vec{V}_{m} is a basis, this equation has only the trivial solv so $c_{1}=d_{1,-m}$, $c_{m}=d_{m}$ $\Rightarrow \in$ \vec{V}_{1} all $\vec{V} \in V$ can be expressed as a unique linear combination of $\vec{V}_{1,m}$, \vec{V}_{m} .

(=) Assure all vectors $\vec{v} \in V$ can be expressed as a unique lin. comb of $\vec{v}_1, \dots, \vec{v}_m$.

clearly $\vec{v}_1, \dots, \vec{v}_m$ span \vec{v}_n . $\vec{v}_1, \dots, \vec{v}_m = \vec{v}_m = \vec{v}_n$ has only the trivial solution. $\vec{v}_1, \dots, \vec{v}_m = \vec{v}_m = \vec{v}_m = \vec{v}_m$ a basis.

QED.

Test 2b
Dusty Wilson
Math 220

Key Name:

Unfortunately what is little recognized is that the most worthwhile scientific books are those in which the author clearly indicates what he does not know; for an author most hurts his readers by concealing difficulties.

No work = no credit

Evariste Galois 1811 = 1832 (French mathematician)

Warm-ups (1 pt each):

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \underbrace{\begin{bmatrix} 3 & 4 \\ 5 & 8 \end{bmatrix}}$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 8 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \qquad AA^{-1} = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$$

1.) (1 pt) According to Galois, how do authors most hurt their readers? Answer using complete English sentences.

Authors make everything look too easy.

2.) (3 pts) Define the following:

a.) What does it mean if $\vec{v}_1, ..., \vec{v}_m \in \mathbb{R}^n$ are linearly independent?

b.) What is the <u>span</u> of $\vec{v}_1, ..., \vec{v}_m \in \mathbb{R}^n$.

c.) How do we know if $\bar{v}_1,...,\bar{v}_m \in \mathbb{R}^n$ are a <u>basis</u> for a subspace V of \mathbb{R}^n ?

3.) (4 pts) According to our text, a subset W of the vector space \mathbb{R}^n is called a <u>subspace</u> of \mathbb{R}^n if it includes a zero and is closed under addition and scalar multiplication.

Is the set $W = \left\{ \begin{vmatrix} x \\ y \end{vmatrix} : x^2 = x + y \right\}$ a subspace. Justify your answer.

$$\frac{NO}{D}$$
 $\left[\begin{array}{c} 1\\ 0\end{array}\right] \in W$ but $2\left[\begin{array}{c} 1\\ 0\end{array}\right] = \left[\begin{array}{c} 2\\ 0\end{array}\right] \notin W$

50 w isn't closed under scalar mult,

- 4.) (6 pts) Answer the following and justify your answer.
 - a.) True of False, there exists a 5x4 matrix whose image consists of all of \mathbb{R}^5

b.) True or False, If A is a 5 x 6 matrix of rank 4, then the nullity of A is 1.

c.) (True) or False, if A and B are both $n \times n$ matrices, and vector \vec{v} is in the kernel of both \vec{x} B, then \overline{v} must be in the kernel of matrix AB as well.

5.) (10 pts) Consider the linear transformation $T(\vec{x}) = A\vec{x}$ such that $T(\vec{v}_1) = \vec{v}_1 + 3\vec{v}_2$ and

$$T(\vec{v}_2) = 2\vec{v}_1 + 7\vec{v}_2$$
 where $\vec{v}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

a.) Find the matrix B of the linear transformation

$$B = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$$

b.) If $\vec{x} = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$, find $[\vec{x}]_B$

$$5 = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \Rightarrow 5^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \Rightarrow 5^{-1} \times = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$$

c.) For the given
$$\bar{x}$$
, find $\left[T(\bar{x})\right]_{B}$

$$B\left[\bar{x}\right]_{B} = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -i \\ -4 \end{bmatrix}_{B}$$

d.) For the given \bar{x} , find $T(\bar{x})$. Hint: One component is -17.

$$S\left[T(\vec{x})\right]_{\mathcal{B}} = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ -4 \end{bmatrix} = \begin{bmatrix} -6 \\ -17 \end{bmatrix}$$
Page 2 of 4 $T(\vec{x})$.

6.) (5 pts) Consider the matrix
$$A = \begin{bmatrix} 6 & 3 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 & 2 \\ 1 & 1 & 2 & -2 & -3 \\ 3 & 6 & 1 & 1 & 4 \end{bmatrix}$$

MEPLA 1 =
$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{4} & 0 \\ 0 & 1 & 0 & \frac{1}{4} & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

a.) Find a basis for the image of A.

basis
$$i \left\{ \begin{bmatrix} b \\ -1 \\ i \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ i \\ 6 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 2 \\ 1 \end{bmatrix} \right\}$$

b.) Find the kernel of A.

c.)
$$rank(A) = 3$$
 and $rullity(A) = 2$

7.) (5 pts) For the matrix A_{nxn} , there are at least 9 statements equivalent to, "A is invertible." List at least five of them. List more for extra credit.

i.) A is invertible.	$(vi.)$ $(A) = \vec{0}$
ii.) rank(A) = 10	vii.) (0.25 pt extra credit)
iii.) Nulliey (A) = 0	viii.) (0.5 pt extra credit)
iv.) det(A) + 0	ix.) (0.75 pt extra credit) Cols span R:
v.)	x.) (1 pt extra credit) $A\vec{x} = \vec{b} \text{has a unique}$

O is not an eigenblue cols of A are a basis for IR".

Of A. Page 3 of 4