503	453	170'5	(00's	90%	100+	
2	***************************************	4	6		And the second s	
Test 2 Dusty Wilson Math 220	X= 6 med= 8	2.1% 75.3%	scientific bo	ooks are those in w	ecognized is that the most which the author clearly indicathor most hurts his read	icates what
No work = no	credit			concea	ling difficulties.	75 Oy
	ording to Galo			$\bar{e}_{1}\bar{e}_{1}^{T} = \int_{0}^{1} e^{-T}$	ariste Galois French mathematician) $\bar{e}_2^T \bar{e}_2 = \underline{I}$ s? Answer using cor	
English senter Authorities		n't Fort	hright	witheir	shortcoming	S,
2.) (10 pts) Fin	nd all eigenval	ues of $A = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 2 \\ 3 & 0 & -6 \\ 1 & 0 & -2 \end{bmatrix} a$	nd state their	algebraic multiplicity	
3	0 2 -\(\lambda\) -	2-3	- A	-λ 2 1 -2-	** Commence of the Commence of	
		, parkj sporen	- 1 (1-2)(-2-	2) - 2)	
	•	istan Later	- x (x	+ 1 + 2	x+x2-/2)	adia
					201	5 2016
^	= 0		$\lambda^2(\lambda + 1)$		g	% 78.1%
λ	= -3	(alg. r	mult 1		1 1 -	85.3%

 $^{^1}$ In the warm-ups, $ec{e}_i$ refers to the standard basis (column) vector in \mathbb{R}^2 .

3.) (10 pts) Find the determinant of
$$B = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ -1 & 2 & 3 & -1 \\ 3 & -1 & -1 & 2 \end{bmatrix}$$

$$|B| = 1 \begin{vmatrix} 1 & -1 & 1 \\ 2 & 3 & -1 \\ -1 & -1 & 2 \end{vmatrix} - 1 \begin{vmatrix} 2 & -1 & 1 \\ -1 & 3 & -1 \\ 3 & -1 & 2 \end{vmatrix} - 3 \begin{vmatrix} 2 & 1 & -1 \\ 3 & -1 & 2 \end{vmatrix}$$

$$= 1 \begin{vmatrix} 3 & -1 \\ -1 & 2 \end{vmatrix} + 1 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ -1 & -1 \end{vmatrix}$$

$$= 1 \begin{vmatrix} 3 & -1 \\ -1 & 2 \end{vmatrix} + 1 \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} + 1 \begin{vmatrix} -1 & -1 \\ 3 & 2 \end{vmatrix} + 1 \begin{vmatrix} -1 & -1 \\ 3 & -1 \end{vmatrix} - 1 \begin{vmatrix} -1 & 3 \\ 3 & -1 \end{vmatrix} - 1 \begin{vmatrix} -1 & 3 \\ 3 & -1 \end{vmatrix}$$

$$= 3 + 3 + 1 - (10 + 1 - 8) - 3(2 + 8 + 5)$$

$$= 9 - 3 - 45$$

Test 2Dusty Wilson
Math 220

No work = no credit

Name:	Key.	
	- U	

Unfortunately what is little recognized is that the most worthwhile scientific books are those in which the author clearly indicates what he does not know; for an author most hurts his readers by concealing difficulties.

Evariste Galois
1811 – 1832 (French mathematician)

1.) (10 pts) The matrix
$$A = \begin{bmatrix} -1 & 0 & 2 \\ 3 & 0 & -6 \\ 1 & 0 & -2 \end{bmatrix}$$
 has eigenvalues $\lambda = 0$ (with algebraic multiplicity 2)

and $\lambda = -3$ (with algebraic multiplicity 1).

Find the corresponding (a.) eigenspaces, (b.) the geometric multiplicity of each eigenvalue, and if there is an eigenbasis (c.) diagonalize A.

$$E_{-3} = \ker \left(\begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$$

$$E_{-3} = \ker \left(\begin{bmatrix} 2 & 0 & 2 \\ 3 & 3 & -6 \end{bmatrix} \right) = \operatorname{span} \left(\begin{bmatrix} 1 \\ -3 \end{bmatrix} \right)$$

(b) the geometric multiplicity of
$$\lambda = 0$$
 is 2 while that of -3 is 1.

(c) A is diagonalized by
$$B = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & -3 \end{bmatrix}$$

$$w|S = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

2.) (10 pts) Consider the matrix
$$A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3 \end{bmatrix}$$

a.) Find a basis for the image of A

Basis for
$$im(n)$$
: $\left\{ \begin{bmatrix} 1\\2\\-3\\4 \end{bmatrix}, \begin{bmatrix} 1\\-1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \right\}$

b.) Find the kernel of A.

b.) Find the kernel of A.

$$\begin{array}{lll}
x_1 &= -x_3 + x_5 \\
x_2 &= -2x_3 - 3x_5 \\
x_3 &= free 5
\end{array}
\Rightarrow \overrightarrow{x} = 5$$

$$\begin{array}{lll}
x_1 &= -x_3 + x_5 \\
x_2 &= -2x_3 - 3x_5 \\
x_3 &= free 5
\end{array}
\Rightarrow \overrightarrow{x} = 5$$

$$\begin{array}{lll}
x_1 &= -x_3 + x_5 \\
x_2 &= -2x_3 - 3x_5 \\
x_3 &= free 5
\end{array}
\Rightarrow \overrightarrow{x} = 5$$

$$\begin{array}{lll}
x_1 &= -x_3 + x_5 \\
x_2 &= -2x_3 - 3x_5 \\
x_3 &= free 5
\end{array}
\Rightarrow \overrightarrow{x} = 5$$

$$\begin{array}{lll}
x_1 &= -x_3 + x_5 \\
x_2 &= -2x_3 - 3x_5 \\
x_3 &= -2x_3 - 3x_5 \\
x_4 &= -4x_5 \\
x_5 &= free 5
\end{array}$$

c.)
$$rank(A) = 3$$
 and $nullity(A) = 2$

3.) (6 pts) Define the following:

a.) What does it mean if $\vec{v}_1, ..., \vec{v}_m \in \mathbb{R}^n$ are linearly independent?

b.) What is the <u>span</u> of $\vec{v}_1, ..., \vec{v}_m \in \mathbb{R}^n$.

c.) How do we know if $\bar{v}_1, ..., \bar{v}_m \in \mathbb{R}^n$ are a <u>basis</u> for a subspace V of \mathbb{R}^n ?

- 4.) (9 pts) Answer the following. 1 point per problem is for an explanation/justification:
 - a.) True or False, the image of a 3x4 matrix is a subspace of \mathbb{R}^4

b.) True or False, if $2\vec{u} + 3\vec{v} + 4\vec{w} = 5\vec{u} + 6\vec{v} + 7\vec{w}$, then \vec{u} , \vec{v} , and \vec{w} must be linearly dependent.

The:
$$\vec{O} = 3\vec{n} + 3\vec{v} + 4\vec{w}$$
 so there is a MON-trivial solv to the homogenous eqt.

c.) True or False, if A and B are invertible 2x2 matrices, then AB must be similar to BA.

- 5.) (6 pts) According to our text, a subset W of the vector space \mathbb{R}^n is called a <u>subspace</u> of \mathbb{R}^n if it has the following three properties:
 - a.) 0 € W.
 - b.) in, it ew = in+vew addition
 - c.) The word KER > kà EW.

 closed under scalar multiplication.
 - d.) (2 pts extra credit) One of these conditions is not necessary, which one and why?

6.) (10 pts) For the matrix A_{nxn} , there are at least 9 statements equivalent to, "A is invertible." List at least five of them. List more for 1 extra credit point (each).

i.) A is invertible.	vi.)
ii.) dat (A) \$0	vii.) (1 pt extra credit) Halling (A) = 0
iii.) cols of A are (.I.	viii.) (1 pt extra credit) ref(A) = I
iv.) $Im(A) = R^{-1}$	ix.) (1 pt extra credit) O is Not an eigenvalue.
-v.) her (A) = 0	x.) (1 pt extra credit) cols of A span B

7.) (10 pts) Consider the linear transformation $T(\bar{x}) = A\bar{x}$ such that $T(\bar{v}_1) = 2\bar{v}_1$ and $T(\bar{v}_2) = -\bar{v}_2$

where
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{v}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

a.) Find the matrix B of the linear transformation

B =
$$\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

b.) If $\bar{x} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$, find $[\bar{x}]_B$

$$\left[\hat{\mathbf{x}}\right]_{\mathcal{B}} = \begin{bmatrix} -2\\ 1 \end{bmatrix}$$

c.) For the given \bar{x} , find $\left[T(\bar{x})\right]_{B}$

$$\begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ -1 \end{bmatrix} = \begin{bmatrix} -4 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

d.) For the given \bar{x} , find $T(\bar{x})$

$$T(\hat{G}) = -4 \begin{bmatrix} 1 \\ -1 \end{bmatrix} - 1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -b \\ -3 \end{bmatrix}$$

Page 6 of 6