S=690

Name: HEY

Name: HEY

Name: HEY

Note: HEY

Note Test 2b **Dusty Wilson** Math 220 No work = no credi concealing difficulties. Evariste Galois 1811 - 1832 (French mathematician) $\vec{e}_2 \cdot \vec{e}_1 = 0$ $\vec{e}_1^T \vec{e}_1 = LI$ Warm-ups (1 pt each)¹: 1.) (1 pt) According to Galois, how do authors most hurt their readers? Answer using complete English sentences. They coreal/hids the tough parts. 2.) (10 pts) The matrix $A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ has eigenvalues $\lambda = -2$ and $\lambda = 4$. Find the corresponding (a.) eigenvectors, (b.) eigenspaces, and (c.) the geometric multiplicity of each eigenvalue. $\lambda = -2$: $\begin{bmatrix} 1 \\ -1 \end{bmatrix} \mathcal{E} \begin{bmatrix} 6 \\ 0 \end{bmatrix}$ $E_{\lambda = -2} = span \begin{pmatrix} 1 \\ 0 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ geometric most = 2 Ex=4 = 5 par ([])

geo, mula = 1

 $^{^1}$ In the warm-ups, \vec{e}_i refers to the standard basis vector in \mathbb{R}^2 . Vectors with a T are written as row vectors, not column vectors

$$X_{1} = -X_{3}$$

$$X_{2} = -X_{3} - 2X_{4}$$

$$X_{3} = X_{3}$$

$$X_{4} = X_{4}$$

b.) Find the kernel of A.

$$ker(A) = spar(\begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix})$$

c.)
$$rank(A) = 2$$
 and $nullity(A) = 2$

4.) (4 pts) Answer the following:

a.) True or False, if vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ are linearly independent vectors in \mathbb{R}^n , then they must form a basis of \mathbb{R}^n .

b.) True or False, there exists a 5x4 matrix whose image consist of all of \mathbb{R}^5 .

菱

5.) (\mathfrak{P} pts) A subset W of the vector space \mathbb{R}^n is called a <u>subspace</u> of \mathbb{R}^n if it has the following properties. Explain the meaning of any terms/phrases used when defining these properties.

O BEW

@ if x, y EW then x+y EW closed under addition.

3 if REW and KER then KREW alosed under scalar more.

6.) (10 pts) For the matrix A_{nxn} , there are at least 9 statements equivalent to, "A is invertible." List at least five of them. List more for 1 extra credit point (each).

i.) A is invertible.

ii.) A= to has unique solv & for a)1 to ER.

iii.) ref(A) = I

iv.) rark(A) = ~

v.) im(A) = R

vii.) (1 pt extra credit) $d = (A) \neq 0$

viii.) (1 pt extra credit) col. vactors of A Form a basis of R

ix.) (1 pt extra credit) and vactors of A span R

x.) (1 pt extra credit) Lol URLS are L.I.

7.) (10 pts) Consider the linear transformation T such $T(\vec{v}_1) = \vec{v}_1$ and $T(\vec{v}_2) = -\vec{v}_1 - \vec{v}_2$ where

$$\vec{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 and $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

$$S = \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix}$$

a.) Find the matrix B of the linear transformation

$$\mathbf{B} = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$$

b.) If
$$\bar{x} = \begin{bmatrix} -6 \\ 2 \end{bmatrix}$$
, find $[\bar{x}]_B$

$$\left[\vec{X}\right]_{\mathcal{B}} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$$

c.) For the given \bar{x} , find $T(\bar{x})$

$$\left[T(\hat{\mathbf{x}}) \right]_{\delta} = \left[\begin{array}{c} -1 \\ 0 \end{array} \right] \left[\begin{array}{c} -1 \\ -3 \end{array} \right] = \left[\begin{array}{c} 2 \\ 3 \end{array} \right]$$

d.) For the given \vec{x} , find $T(\vec{x})$

8.) (10 pts) We say $\bar{v}_1, ..., \bar{v}_m \in \mathbb{R}^n$ are a <u>basis</u> for a subspace V of \mathbb{R}^n if they have the following properties. Explain the meaning of any terms/phrases used when defining these properties.