True or False

H 1 ¢ H 1 0
. RO - 0 1 b 0 1 ] —— oy
basis A, Now o2 =1 119l and 2| =1 +h | ,sothatSmSgﬁAm[a b}w
a? 1 2 b 1 2 |
2 2

1 )
21145 1-+/5

g. Using the equations 1+ a = a® and 1+ b = b?, we find that AS = 58 = % g ]

n T4
4.3.78 a. To check orthogonality, verify that & - T(&) = 0. To check that T{¥) = zﬁ = ——xmg isin V if #is
3 2
Ya —x
in V, we need to verify that g5 = 1 + 12 and yy = ys + ya, meaning that xs = 14 — 25 and —1 = —23 + . But
the two last equations follow from the definition of V.
1 i 1 0 1] 2 1 Q
0 ~1 0 1 i I e N L N
b, F L= 0 = 1 i -1 1aﬁdF il = i = 2 1 -1 1 , 80 that 4 =
1 -1 1 2 2 0 1 2
1 2
~1 =1
0 "2 [ 2 07 0
1 -1 ST IO I U I I _ o -1
c. F L= 1 and F 1 = ;1= (-1} 1|0 that B = { 1 0 ]
2 0 | 0 -2 | 2 _
d. To write the change of basis matrix g 4, we need to express the vectors of basis B in terms of the vectors of
0 1 G 2 1 0
1y |0 1] -1y L0 L1 e o 2 ]
bagis 4. Now ) =0 : +1 | and ; = 2 ) i 1 ,sotha,LSmSg%A—[l -1 ]
|2 1] 2 1 2

¢. We find thet AS = SB = { 20 }

f. No such basis C exists, since the rotation matrix B = [ ? :)1 ] from part ¢ fails to be similar to a diagonal

matrix, by Example 3.4.10.

True or False
Ch 4.TF.1 .T; We are locking at P, with a basis 1,1,12,¢%,¢*, %, 45, which has seven elements.
Ch 4.TF.2 T; We can check hoth requirements of Definition 4.2.1.
: éh 4.TF.3 T, check the three properties listed in Definition 4.1.2.
Ch 4 TF.4 T; by Definition 4.2.1.
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. 100 01 0 0 01 000 0 00
. i 2x3 5g
Ch 4.TF.5 F; A basis of R**V is [O 0 0],[0 0 0],[ },{ },[ },

{8 g [1)}, 0 it has a dimension of 6.
Ch 4.TF.6 T; check with Definition 4.1.3¢.

Ch 4.TF.7 T; The Hnear transformation T(az + b} = a -+ ib is an isomorphism from P to €, with the inverse
T-Ya+b) = azx + b.

Ch 4.TF.8 T, by Theorem 4.2.4c.

Ch 4.TF.9 T; This fits all properties of Definition 4.1.2.

Ch 4.TF.10 F; The transformation T' could be: T{f} = {

the dimension of the kerne! would be 7.

8 8} , in which case the kernel would be all of Py and

Ch4TF11 F; 2,62 4+ 2,42 4,13 + 1 is a basis of Ps.
Ch 4 TF.12 T;1If T is linear and invertible, then 7! will be linear and invertible as well.

Ch 4 TF.13 F; T(sin{z}) = sin(z) — sin{z) = 0.
, 6 06}, . .
Ch4TF14 F;T(f) = {0 O] is not an isormorphism.

Ch 4TF.15 F; Let V=R%, A= E :ﬂ Now tm{d) = ker(d) = W‘“(ED

Ch 4. TF.18 T, the dimensions of both spaces are the same: 10.
Ch 4. TF.17 F; dim{P:)= 4, 50 the three given polvnomials cannot span P;.
Ch 4.TF.18 T; We can construct a basis of V by omitting the redundant elements from a list of ten elements that

gpan V. Thus dim(V) < 10

1 g 10 0] 10}
Ch 4 TF.19 Ty det[o G}+det[0 1}—0:#(16‘{0 J—]..

Ch 4TF.20 F; For any matrix A, the space of matrices commuting with A is at least two-dimensional. Indeed, if
A is a scalar multiple of I5, then A commutes with all 2 x 2 matrices, and if A fails to be a scalar multiple of Io,
then A commautes with the linearly independent matrices A and fs.

. a by 11 20ta bl la+2 b+2d
Ch 4TF.21 F’T([c dD = {3 6] [c d} = [3a+6c 36+6d]
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0 01

= {g + 2¢} {é O] + (b +2d) lo 3}. So the image is the span of B g} and [0 !

0 3}, and rank(T"}= 2.

Ch 4.TF.22 T; If the basis B we consider is fi, fa, then the given matrix tells us that T(f;) = 3f; and T(fs) =
5fy +4fs. Thus f = f, does the job.

Ch 4. TF.23 T, X T(f(t)) = f(#2) = 0, f(t) must also be zero,

Ch 4.TF.24 T, The inverse is T7* (N} = §-IN§:, |

11 1 1]lie ] _Ja b1 17
Ch 4.TF.25 T,LetAm[O O]Thenwewant [0 oHc d}“{c dJ [0 OJ,or

ate b4d|l e a| g o ) . . 1 8 001
[ 0 0 :IWL C].Thus,c—@allda—de. So our space is the span of [O J and [1 1)

Ch 4 TF.26 T; Let our basis he [é ﬂ 5 [é _OJ , [? é} , [El H . Each matrix here is invertible, and aiso

clearly none are redundant.
Ch 4TF.27 F; T(f(t)) = f'{¢} is not an isomorphism.

Ch 4 TF.28 T; We need only show that either the new list contains no redundant elements, or spans the whole
space. The latter is slightly easler to show. Since fi, fo, f3 form a basis of V., it suffices to show that these three
elements are in the span of f1, f1 + fo, f1 + fo + fs5. This is simple to demonstrate: fo = (fi + f2) — f1, and

fs={i+th+f)-(fi+f)

Ch 4.TF.29 T; We show that none of the polynomials is redundant; let’s call them f{x), g(z) and hiz). Now g(x)
isn’t & maultiple of f(x) since f(b) = 0, but g(b) # 0. Likewise, iz) isn’t a linear combination of f(z) and g(x)
since f{c} = g{e) = 0, but h(e) # 0.

Ch 4.TF.80 T; Make the substitution 4t — 3 = s to see that the inverse is 771 (g(s)} = g(%2).

Ch 4TF.31 F; P, is a subspace of P, and P is infinite dimensional.

Ch4.TF.32 T;Let T (

prm——
o e

b 1
€ } ) s [b ;J . We can easily see that the kernel and image of this transformation
h

are exactly as required.

10

Ch 4 TF.33 T; The space spanned by [0 0

} and {8 é} contains no invertible matrices,

Ch 4.TF.34 F; This is the change of basis matrix from B to .4. The change of basis matrix we are looking for is:
1 -1
o7
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Ch 4TF.835 F;Let B = (f,g) and{ = (g, /). The fact that [g ii{ is the B- matrix of T’ implies that [T{f)lg = [é]
or T{f}= f+3g. But then [T(f)l¢ = E} meaning that the second column of the C-matrix of T is E} This

21

shows that the matrix { 13

} fails to be the C-matrix of T'.

Ch 4.TF.36 T; The lmage of 7" is Py, so that rank(T) = dim {(imT) = dim(Pr—1) = n.

Ch A.TF.37 T, because the matrix is invertible.

Ch 4.TF.38 T; The dimension of Py is 10, and the dimension of R®*4 s 12. Thus, any 10-dimensional subspace of
R3*4 will be acceptable. For example, we can consider the space of all 3 x 4 masrices A with ayy = aqs = 0.

Ch 4.TF.39 T; let W, be {5} Then any other subspace Ws unioned with Wy will simply be Wy again, which we
know is a subspace.

Ch 4TF40 T;Let T{ag+ait-+agt®+ - +agt®+- ) = ag+at+agt? +- - -+a5t%. The image of this transformation
is clearly all of P5, and T satisfies the requirements of Definition 4.2.1.

Ch 4.TF.41 'T; there will be no redundant elements in this list.
Ch 4.TF.42 T; The kernel of T consists of all constant functions.

Ch 4.TF.43 T; We apply the rank-nullity theorem: dim(W} = dim(im(T")) = dim(P}) — dim(ker(T)} = 5 —
dim(ker{T)) < 5.

Ch 4 TF.44 F; We can constriuct as many linearly independent elements in ker(T) as we want, for example, the
polynomials f{t) = t" - ;;iﬁ, for all positive integers 7.

Ch 4.TF.45 T;0is in our set, and if f and g are in our set, then T(f + g} = T(f) +T{g) = f + gso that f -+ g is
in our set as well. Also, if f is in our set and £ is an arbitrary scalar, then T(kf) = kT(f) = kf, so kf is in our
set as well.

Ch 4.TF.46 T, The kernel of T is {0} . Indeed, if f{¢) is a nonzero polynomial, with f(#) = ag + a1t + ... + apt*
where ay, # 0, then T(f(t)) = aoT(1) + 01T (t) + ... + axT(t*}is of degree k > 0, so that T(f(t))fails to be the
zero polynomial.

Ch 4.TF.47 T;Let P=Is, Q = ~Iz. Then T(M) = IsM ~ M{—1I3) = 2M, which is-an isomorphism.
Ch 4.TF.48 F; We use dimension arithmetic here to show that this cannot happen. Any transformation 7" from Py

to € must have a kernel of at least 5 dimensions, since P is 7-dimensional and C is only a 2-dimensional space.
Thus, any such kernel cannot be isomorphic to B2*2, which is a 4-dimensional space.

Ch4TF.49 ¥, If f = — f1, then 0 is a member of the list!

Ch 4. TF.50 T; Consider the space of all matrices of the form F

—b
b o } , for example.
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Ch 4.TF.51 T, note that dim{Fs;) = 12 = dim(R3**). The linear spaces P;; and R¥** are both isomorphic to B2,
via the coordinate transformation, and thus they are isomorphic to each other.

Ch 4. TF.52 F; Consider the linear transformation T{f(¢)} = f(t} from P to P, for example.
Ch 4.TF.53 T; We use the rank-nullity theorem: dim(V) =dim{im(T"})+dirn(ker{T))=dim(im(T)}< dim{B**?) = 4.

Ch 4.TF.54 T; Using the fundamental theorem of calculus, we can write g(t) = T(f(t)) = 3f(3t + 4). Make the
substitution 3t 4+ 4 = ¢ to see that the inverse is T~ 1{g(g)) = g{{s —~ 4)/3}/3.

Ch 4TF.55 T; Using a coordinate transformation, it suffices to show this for R*, For every real number k, we define
the three dimensional subspace Vi of B* consisting of all vectors & such that 24 = kzs. If ¢ is different from k,

]
then V. and Vi will be different subspaces of B*, since V), contains the vector (1) ., but V., does not. Thus we

k
have generated infinitely many distinct three-dimensional subspaces Vi, of R%, one for every real aumber k.

Ch 4.TF.56 T; I the basis 5 we consider is f1, fo, then the given matrix tells us shat T{f;} = 3f; and T(fo) =
3f1 +4f2. We are looking for a nonzero f = af; + bfs such that T(f) = 4f. Now T(f) = aT(f1) + T (f2) =
3afi -+ Bbfy -+ 4bfo = {3a 1 5b) f1 + 4b fa must be equal to 4f = dafi +4bfa. Thus it is required that 3¢ + 5b = 4a,
or a = bb. For example, f = 5f1 + f2 does the job.

Ch 4. TF.57 T; This is logically equivalent to the following statement: If the domain of T is finite dimensional, then
80 ig the image of T. Compare with Exercises 4.2.81a and 4.1.57.

Ch £ TF.58 F; If A is a scalar multipie of Iz, then all 2 x 2 matrices commuie with A, so that the space of

commuting matrices is 4 - dimensional. ¥ 4 = | © b fails to be a scalar multiple of Is, consider the equation
g d
{i (ﬂ :zc ﬂ = [z ﬂ [i cﬂ , which amounts to the system ey — bz = 8,bx + (d — a)y — bt = 0, cx +

d—a)z—ct=0 If b0, then the first two equations are independent; if ¢ 5% 0, then the first and the third

equation are independent; and if a # d, then the second and the third equation are independent. Thus the rank
of 'the system is at least two and the solution space is at most two-dimensional. (The solution space is in fact
two -dimensional, since A and [z are independent solutions.)

Ch 4TF.59 T;If A = 0, then we are done. If rank(A) = 1, then the image of the linear transformation T{M) = AM
from B2*2 to R**? js two dimensional {if 4 is a basis of im{A), then {ff T 17] i a basis of im(T")}. Since the
three matrices AB = T{B), AC = T(C) , and AD = T{I)} are all in im{T"), they must be linearly dependent.

Ch 4.TF.60 F; Consider two distinct three-dimensional subspaces W) and W, of Py, Since the spaces Wy and Wa
are distinct, neither of them is a subspace of the cther, so that we can find a polynomial f; that is in W) but
not in W as well as an fs that is in Wa but not in Wy, Then f; and fo are both in the union of Wi and W,
but fi <+ fz isn't.

Ch 4. TF.61 T; Pick the first redundant element [ in the list. Since the elemenis fy,..., fy1 are linearly indepen-
dent, the representation of fi as a linear combination of the preceding elements will be unigue.
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Ch 4. TF.62 F; T{I3) = P — P =0, and T can never be an isomorphism.

Ch 4. TF.63 T; Let W = span(f1, fa, fa, f1, 5} = span{fa, f1. f5, f1, f3). If we omit the two redundant elements from
the first list, fi, fo, f3, fs, f5, we end up with a basis of W with three elements, so that dim(W) = 3. If we omit
the redundant elements from the second list, fa, f4, f5. f1, f3, we end up with a (possibly different) basis of W,
but that basis must consist of 3 elements as well. Thus there must be two redundant elements in the second list.

Ch 4 TF.64 T; The dimensions of the kernel and image would have to be equal, and both add up to the dimension
of P;, which is the odd number 7.

Ch 4.TF.65 T; Consider the proof of the rank nullity theorem outlined in Exercise 4.2.81. In the proof, we use bases
of ker(T} and im(7T") to construct a basis of the domain.

Ch 4TF.66 F; If the basis B we consider is f1, fa, then the given matrix tells us that T(f1) = 3/, and T(f
(

} o=
5f1 +4fz. We are locking for a nonzerc f = afy + bfs such that T{f) = 57. Now T(f) = oT(f1) + DT (f5) =

2
2
3af14+5bf: +4bfs = (3a+5b) fi +4bfo must be equal to 5f = Baf; +5bf5. Thus it is required that 3¢ -+ 56 = 5a
and 4b == 5b, implying that o = b =0, We are unable to find a nonzero f with the desired property.

i
single linear equation ax + by + cz + dt = 0 , where at least one of the coefficients is nonzero, Suppose =z is the
leading variable {meaning that a # 0), and y, z and t are the free variables. We can choose y = z = 1 and ¢ = 0,

Ch 4.TF.67 T; Consider a 3-dimensional subspace W of R2*2. The matrices z ‘ﬂ in W can be described by a

and the resulting matrix in W will be invertible. We represent © by a star, since its value does not affect

% 1
1 0
the invertibility. If y is the leading variable and the other three are the free variables, then we can construct the

r
invertible matrix m . 2z is the leading variable, we have t e mvertible matrix R nany, ror
invertibl '[éI'WIf‘hid‘g iable, we have the invertibl [i ﬂ Finally, f

the leading variable { we have ﬁ] ﬂ .
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