basis
$$\mathcal{A}$$
. Now $\begin{bmatrix} 1 \\ a \\ a^2 \\ a^3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + a \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ b \\ b^2 \\ b^3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$, so that $S = S_{\mathcal{B} \to \mathcal{A}} = \begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 2 \\ 1 + \sqrt{5} & 1 - \sqrt{5} \end{bmatrix}$

- g. Using the equations $1+a=a^2$ and $1+b=b^2$, we find that $AS=SB=\left[\begin{array}{cc} a & b \\ a^2 & b^2 \end{array}\right].$
- 4.3.73 a. To check orthogonality, verify that $\vec{x} \cdot T(\vec{x}) = 0$. To check that $T(\vec{x}) = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} x_4 \\ -x_3 \\ x_2 \\ -x_1 \end{bmatrix}$ is in V if \vec{x} is

in V, we need to verify that $y_3 = y_1 + y_2$ and $y_4 = y_2 + y_3$, meaning that $x_2 = x_4 - x_3$ and $-x_1 = -x_3 + x_2$. But the two last equations follow from the definition of V.

b.
$$F\begin{bmatrix} 1\\0\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-1\\0\\-1 \end{bmatrix} = 1 \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} - 1 \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix} \text{ and } F\begin{bmatrix} 0\\1\\1\\2 \end{bmatrix} = \begin{bmatrix} 2\\-1\\1\\0 \end{bmatrix} = 2 \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix} - 1 \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix}, \text{ so that } A = \begin{bmatrix} 1&2\\-1&-1\\1&2 \end{bmatrix} = \begin{bmatrix} 1&2\\-1&-1\\1&2 \end{bmatrix} = \begin{bmatrix} 1&2\\-1&-1\\1&2 \end{bmatrix}, \text{ and } F\begin{bmatrix} 1&2\\1&2 \end{bmatrix} = \begin{bmatrix} 1&2\\-1&1\\1&2 \end{bmatrix} = \begin{bmatrix} 1&2\\1&2 \end{bmatrix} = \begin{bmatrix} 1&2\\1&2$$

c.
$$F\begin{bmatrix}0\\1\\1\\2\end{bmatrix} = \begin{bmatrix}2\\-1\\1\\0\end{bmatrix}$$
 and $F\begin{bmatrix}2\\-1\\1\\0\end{bmatrix} = \begin{bmatrix}0\\-1\\-1\\-2\end{bmatrix} = (-1)\begin{bmatrix}0\\1\\1\\2\end{bmatrix}$, so that $B = \begin{bmatrix}0&-1\\1&0\end{bmatrix}$

d. To write the change of basis matrix $S_{\mathcal{B}\to\mathcal{A}}$, we need to express the vectors of basis \mathcal{B} in terms of the vectors of

basis
$$\mathcal{A}$$
. Now $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$, so that $S = S_{\mathcal{B} \to \mathcal{A}} = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix}$

- e. We find that $AS = SB = \begin{bmatrix} 2 & 0 \\ -1 & -1 \end{bmatrix}$.
- f. No such basis C exists, since the rotation matrix $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ from part c fails to be similar to a diagonal matrix, by Example 3.4.10.

True or False

- Ch 4.TF.1 T; We are looking at P_6 , with a basis $1, t, t^2, t^3, t^4, t^5, t^6$, which has seven elements.
- Ch 4.TF.2 T; We can check both requirements of Definition 4.2.1.
- Ch 4.TF.3 T; check the three properties listed in Definition 4.1.2.
- Ch 4.TF.4 T; by Definition 4.2.1.

$$\begin{array}{lll} \text{Ch 4.TF.5} & \text{F; A basis of } \mathbb{R}^{2\times3} \text{ is } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \\ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ so it has a dimension of 6.} \end{array}$$

- Ch 4.TF.6 T; check with Definition 4.1.3c.
- Ch 4.TF.7 T; The linear transformation T(ax + b) = a + ib is an isomorphism from P_1 to \mathbb{C} , with the inverse $T^{-1}(a+ib) = ax + b$.
- Ch 4.TF.8 T; by Theorem 4.2.4c.
- Ch 4.TF.9 T; This fits all properties of Definition 4.1.2.
- Ch 4.TF.10 F; The transformation T could be: $T(f) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, in which case the kernel would be all of P_6 and the dimension of the kernel would be 7.
- Ch 4.TF.11 F; t^3 , $t^3 + t^2$, $t^3 + t$, $t^3 + 1$ is a basis of P_3 .
- Ch 4.TF.12 T; If T is linear and invertible, then T^{-1} will be linear and invertible as well.
- Ch 4.TF.13 F; $T(\sin(x)) = \sin(x) \sin(x) = 0$.
- Ch 4.TF.14 F; $T(f) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is not an isomorphism.
- Ch 4.TF.15 F; Let $V = \mathbb{R}^2$, $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$. Now $\operatorname{im}(A) = \ker(A) = \operatorname{span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$.
- Ch 4.TF.16 T; the dimensions of both spaces are the same: 10.
- Ch 4.TF.17 F; $\dim(P_3) = 4$, so the three given polynomials cannot span P_3 .
- Ch 4.TF.18 T; We can construct a basis of V by omitting the redundant elements from a list of ten elements that span V. Thus $\dim(V) \leq 10$.

$$\operatorname{Ch} \, 4.\operatorname{TF.}\mathbf{19} \quad F; \, \det \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \det \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 0 \neq \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1.$$

Ch 4.TF.20 F; For any matrix A, the space of matrices commuting with A is at least two-dimensional. Indeed, if A is a scalar multiple of I_2 , then A commutes with all 2×2 matrices, and if A fails to be a scalar multiple of I_2 , then A commutes with the linearly independent matrices A and I_2 .

Ch 4.TF.21 F;
$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+2c & b+2d \\ 3a+6c & 3b+6d \end{bmatrix}$$

$$= (a+2c)\begin{bmatrix}1 & 0 \\ 3 & 0\end{bmatrix} + (b+2d)\begin{bmatrix}0 & 1 \\ 0 & 3\end{bmatrix}. \text{ So the image is the span of } \begin{bmatrix}1 & 0 \\ 3 & 0\end{bmatrix} \text{ and } \begin{bmatrix}0 & 1 \\ 0 & 3\end{bmatrix}, \text{ and } \text{rank}(T) = 2.$$

- Ch 4.TF.22 T; If the basis \mathcal{B} we consider is f_1, f_2 , then the given matrix tells us that $T(f_1) = 3f_1$ and $T(f_2) = 5f_1 + 4f_2$. Thus $f = f_1$ does the job.
- Ch 4.TF.23 T; If $T(f(t)) = f(t^2) = 0$, f(t) must also be zero.
- Ch 4.TF.24 T; The inverse is $T^{-1}(N) = S^{-1}NS^{-1}$.
- Ch 4.TF.25 T; Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Then we want $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, or $\begin{bmatrix} a+c & b+d \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & a \\ c & c \end{bmatrix}$. Thus, c=0 and a=b+d. So our space is the span of $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$.
- Ch 4.TF.26 T; Let our basis be $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Each matrix here is invertible, and also clearly none are redundant.
- Ch 4.TF.27 F; T(f(t)) = f'(t) is not an isomorphism.
- Ch 4.TF.28 T; We need only show that either the new list contains no redundant elements, or spans the whole space. The latter is slightly easier to show. Since f_1, f_2, f_3 form a basis of V, it suffices to show that these three elements are in the span of $f_1, f_1 + f_2, f_1 + f_2 + f_3$. This is simple to demonstrate: $f_2 = (f_1 + f_2) f_1$, and $f_3 = (f_1 + f_2 + f_3) (f_1 + f_2)$.
- Ch 4.TF.29 T; We show that none of the polynomials is redundant; let's call them f(x), g(x) and h(x). Now g(x) isn't a multiple of f(x) since f(b) = 0, but $g(b) \neq 0$. Likewise, h(x) isn't a linear combination of f(x) and g(x) since f(c) = g(c) = 0, but $h(c) \neq 0$.
- Ch 4.TF.30 T; Make the substitution 4t 3 = s to see that the inverse is $T^{-1}(g(s)) = g(\frac{s+3}{4})$.
- Ch 4.TF.31 F; P_2 is a subspace of P, and P is infinite dimensional.
- Ch 4.TF.32 T; Let $T \begin{pmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \end{pmatrix} = \begin{bmatrix} b & c \\ 0 & f \end{bmatrix}$. We can easily see that the kernel and image of this transformation are exactly as required.
- Ch 4.TF.33 F; The space spanned by $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ contains no invertible matrices.
- Ch 4.TF.34 F; This is the change of basis matrix from \mathcal{B} to \mathcal{A} . The change of basis matrix we are looking for is: $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

- Ch 4.TF.35 F; Let $\mathcal{B}=(f,g)$ and $\mathcal{C}=(g,f)$. The fact that $\begin{bmatrix}1&2\\3&4\end{bmatrix}$ is the \mathcal{B} matrix of T implies that $[T(f)]_{\mathcal{B}}=\begin{bmatrix}1\\3\end{bmatrix}$, or T(f)=f+3g. But then $[T(f)]_{\mathcal{C}}=\begin{bmatrix}3\\1\end{bmatrix}$, meaning that the second column of the \mathcal{C} -matrix of T is $\begin{bmatrix}3\\1\end{bmatrix}$. This shows that the matrix $\begin{bmatrix}2&1\\4&3\end{bmatrix}$ fails to be the \mathcal{C} -matrix of T.
- Ch 4.TF.36 T; The image of T is P_{n-1} , so that $\operatorname{rank}(T) = \dim(\operatorname{im} T) = \dim(P_{n-1}) = n$.
- Ch 4.TF.37 T; because the matrix is invertible.
- Ch 4.TF.38 T; The dimension of P_9 is 10, and the dimension of $\mathbb{R}^{3\times4}$ is 12. Thus, any 10-dimensional subspace of $\mathbb{R}^{3\times4}$ will be acceptable. For example, we can consider the space of all 3×4 matrices A with $a_{11}=a_{12}=0$.
- Ch 4.TF.39 T; let W_1 be $\{\vec{0}\}$. Then any other subspace W_2 unioned with W_1 will simply be W_2 again, which we know is a subspace.
- Ch 4.TF.40 T; Let $T(a_0 + a_1t + a_2t^2 + \dots + a_5t^5 + \dots) = a_0 + a_1t + a_2t^2 + \dots + a_5t^5$. The image of this transformation is clearly all of P_5 , and T satisfies the requirements of Definition 4.2.1.
- Ch 4.TF.41 T; there will be no redundant elements in this list.
- Ch 4.TF.42 F; The kernel of T consists of all constant functions.
- Ch 4.TF.43 T; We apply the rank-nullity theorem: $\dim(W) = \dim(\operatorname{im}(T)) = \dim(P_4) \dim(\ker(T)) = 5 \dim(\ker(T)) \le 5$.
- Ch 4.TF.44 F; We can construct as many linearly independent elements in $\ker(T)$ as we want, for example, the polynomials $f(t) = t^n \frac{1}{n+1}$, for all positive integers n.
- Ch 4.TF.45 T; 0 is in our set, and if f and g are in our set, then T(f+g) = T(f) + T(g) = f + g so that f+g is in our set as well. Also, if f is in our set and k is an arbitrary scalar, then T(kf) = kT(f) = kf, so kf is in our set as well.
- Ch 4.TF.46 T; The kernel of T is $\{0\}$. Indeed, if f(t) is a nonzero polynomial, with $f(t) = a_0 + a_1 t + ... + a_k t^k$ where $a_k \neq 0$, then $T(f(t)) = a_0 T(1) + a_1 T(t) + ... + a_k T(t^k)$ is of degree $k \geq 0$, so that T(f(t)) fails to be the zero polynomial.
- Ch 4.TF.47 T; Let $P = I_2$, $Q = -I_2$. Then $T(M) = I_2M M(-I_2) = 2M$, which is an isomorphism.
- Ch 4.TF.48 F; We use dimension arithmetic here to show that this cannot happen. Any transformation T from P_6 to \mathbb{C} must have a kernel of at least 5 dimensions, since P_6 is 7-dimensional and \mathbb{C} is only a 2-dimensional space. Thus, any such kernel cannot be isomorphic to $\mathbb{R}^{2\times 2}$, which is a 4-dimensional space.
- Ch 4.TF.49 F; If $f = -f_1$, then 0 is a member of the list!
- Ch 4.TF.**50** T; Consider the space of all matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, for example.

- Ch 4.TF.51 T; note that $\dim(P_{11}) = 12 = \dim(\mathbb{R}^{3\times 4})$. The linear spaces P_{11} and $\mathbb{R}^{3\times 4}$ are both isomorphic to \mathbb{R}^{12} , via the coordinate transformation, and thus they are isomorphic to each other.
- Ch 4.TF.52 F; Consider the linear transformation T(f(t)) = f(t) from P_2 to P, for example.
- Ch 4.TF.53 T; We use the rank-nullity theorem: $\dim(V) = \dim(\operatorname{im}(T)) + \dim(\ker(T)) = \dim(\operatorname{im}(T)) \le \dim(\mathbb{R}^{2\times 2}) = 4$.
- Ch 4.TF.54 T; Using the fundamental theorem of calculus, we can write g(t) = T(f(t)) = 3f(3t+4). Make the substitution 3t+4=s to see that the inverse is $T^{-1}(g(s)) = g((s-4)/3)/3$.
- Ch 4.TF.55 T; Using a coordinate transformation, it suffices to show this for \mathbb{R}^4 . For every real number k, we define the three dimensional subspace V_k of \mathbb{R}^4 consisting of all vectors \vec{x} such that $x_4 = kx_3$. If c is different from k, then V_c and V_k will be different subspaces of \mathbb{R}^4 , since V_k contains the vector $\begin{bmatrix} 0 \\ 0 \\ 1 \\ k \end{bmatrix}$, but V_c does not. Thus we have generated infinitely many distinct three-dimensional subspaces V_k of \mathbb{R}^4 , one for every real number k.
- Ch 4.TF.56 T; If the basis \mathcal{B} we consider is f_1, f_2 , then the given matrix tells us that $T(f_1) = 3f_1$ and $T(f_2) = 5f_1 + 4f_2$. We are looking for a nonzero $f = af_1 + bf_2$ such that T(f) = 4f. Now $T(f) = aT(f_1) + bT(f_2) = 3af_1 + 5bf_1 + 4bf_2 = (3a + 5b)f_1 + 4bf_2$ must be equal to $4f = 4af_1 + 4bf_2$. Thus it is required that 3a + 5b = 4a, or a = 5b. For example, $f = 5f_1 + f_2$ does the job.
- Ch 4.TF.57 T; This is logically equivalent to the following statement: If the domain of T is finite dimensional, then so is the image of T. Compare with Exercises 4.2.81a and 4.1.57.
- Ch 4.TF.58 F; If A is a scalar multiple of I_2 , then all 2×2 matrices commute with A, so that the space of commuting matrices is 4 dimensional. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ fails to be a scalar multiple of I_2 , consider the equation $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & y \\ z & t \end{bmatrix} = \begin{bmatrix} x & y \\ z & t \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, which amounts to the system cy bz = 0, bx + (d-a)y bt = 0, cx + (d-a)z ct = 0. If $b \neq 0$, then the first two equations are independent; if $c \neq 0$, then the first and the third equation are independent; and if $a \neq d$, then the second and the third equation are independent. Thus the rank of the system is at least two and the solution space is at most two-dimensional. (The solution space is in fact two-dimensional, since A and I_2 are independent solutions.)
- Ch 4.TF.59 T; If A=0, then we are done. If $\operatorname{rank}(A)=1$, then the image of the linear transformation T(M)=AM from $\mathbb{R}^{2\times 2}$ to $\mathbb{R}^{2\times 2}$ is two dimensional (if \vec{v} is a basis of $\operatorname{im}(A)$, then $\begin{bmatrix} \vec{v} & \vec{0} \end{bmatrix}$, $\begin{bmatrix} \vec{0} & \vec{v} \end{bmatrix}$ is a basis of $\operatorname{im}(T)$). Since the three matrices AB=T(B), AC=T(C), and AD=T(D) are all in $\operatorname{im}(T)$, they must be linearly dependent.
- Ch 4.TF.60 F; Consider two distinct three-dimensional subspaces W_1 and W_2 of P_4 . Since the spaces W_1 and W_2 are distinct, neither of them is a subspace of the other, so that we can find a polynomial f_1 that is in W_1 but not in W_2 as well as an f_2 that is in W_2 but not in W_1 . Then f_1 and f_2 are both in the union of W_1 and W_2 , but $f_1 + f_2$ isn't.
- Ch 4.TF.61 T; Pick the first redundant element f_k in the list. Since the elements f_1, \ldots, f_{k-1} are linearly independent, the representation of f_k as a linear combination of the preceding elements will be unique.

- Ch 4.TF.62 F; $T(I_3) = P P = 0$, and T can never be an isomorphism.
- Ch 4.TF.63 T; Let $W = \text{span}(f_1, f_2, f_3, f_4, f_5) = \text{span}(f_2, f_4, f_5, f_1, f_3)$. If we omit the two redundant elements from the first list, f_1, f_2, f_3, f_4, f_5 , we end up with a basis of W with three elements, so that $\dim(W) = 3$. If we omit the redundant elements from the second list, f_2, f_4, f_5, f_1, f_3 , we end up with a (possibly different) basis of W, but that basis must consist of 3 elements as well. Thus there must be two redundant elements in the second list.
- Ch 4.TF.64 F; The dimensions of the kernel and image would have to be equal, and both add up to the dimension of P_6 , which is the odd number 7.
- Ch 4.TF.65 T; Consider the proof of the rank nullity theorem outlined in Exercise 4.2.81. In the proof, we use bases of $\ker(T)$ and $\operatorname{im}(T)$ to construct a basis of the domain.
- Ch 4.TF.66 F; If the basis \mathcal{B} we consider is f_1, f_2 , then the given matrix tells us that $T(f_1) = 3f_1$ and $T(f_2) = 5f_1 + 4f_2$. We are looking for a nonzero $f = af_1 + bf_2$ such that T(f) = 5f. Now $T(f) = aT(f_1) + bT(f_2) = 3af_1 + 5bf_1 + 4bf_2 = (3a + 5b)f_1 + 4bf_2$ must be equal to $5f = 5af_1 + 5bf_2$. Thus it is required that 3a + 5b = 5a and 4b = 5b, implying that a = b = 0. We are unable to find a nonzero f with the desired property.
- Ch 4.TF.67 T; Consider a 3-dimensional subspace W of $\mathbb{R}^{2\times 2}$. The matrices $\begin{bmatrix} x & y \\ z & t \end{bmatrix}$ in W can be described by a single linear equation ax + by + cz + dt = 0, where at least one of the coefficients is nonzero. Suppose x is the leading variable (meaning that $a \neq 0$), and y, z and t are the free variables. We can choose y = z = 1 and t = 0, and the resulting matrix $\begin{bmatrix} * & 1 \\ 1 & 0 \end{bmatrix}$ in W will be invertible. We represent x by a star, since its value does not affect the invertibility. If y is the leading variable and the other three are the free variables, then we can construct the invertible matrix $\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$ in W. If z is the leading variable, we have the invertible matrix $\begin{bmatrix} 1 & 0 \\ * & 1 \end{bmatrix}$. Finally, for the leading variable t we have $\begin{bmatrix} 0 & 1 \\ 1 & * \end{bmatrix}$.