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1 1 . positive. (Here you are proving the last claim
of the vectors [2] and [_1}, for any positive rem 2.3.11a.)
integer m. See Exercise 81.
d. In your equation in part ), let m go to infinity

to find 1_i_r>noo(A'"x). Verify that your answer is the
m
equilibrium distribution for A.

84. Consider ann X m matrix A of rank n. Show
exists an m x n matrix X such that AX = In.
how many such matrices X are there?

——

85. Considerann Xn matrix A of rank n. How m

83. If A% = ¥ for a regular transition matrix A and a distri- i
matrices X are there such that AX = I?

bution vector X, show that all components of X must be

MThe Inverse of a Linear Transformation

Let’s first review the concept of an invertible function. As you read thes
A definitions, consider the examples in Figures 1 and 2, where X and Y are

T R s
| e Yy X Y
! ‘] X@
! 1 —

‘ Figure | Tis invertible. R is not invertible: The equation R (x) = yo has two solutions, x1 and
b invertible: There is no x such that S(x) = yo.

T T-1
: X Y X Y
— —
b P S
b
H
|

Figure 2 A function 7 and its inverse T-L

7 i Definition 2.4.|  Invertible Functions

A function T from X to Y is called invertible if the equation T (x)
unique solution x in X foreachyinY.
In this case, the inverse T-! from Y to X is defined by

T~!(y) = (the unique x in X such that T (x) = ¥)-
To put it differently, the equation »
x=T7) means that y = T{x).
Note that
T (T(x)=x and T(T7 ) =Y

for all x in X and for all y in Y.
Conversely, if L is a function from Y to X such that

LI@)=x ad T(LO)=Y

!
3 coc all x in X and for all y in ¥, then 7 is invertible and T~ = L.
e If a function T is invertible, then so is T-tand (T H 1 =T.
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Definition 2.4.2

Theorem 2.4.3

Theorem 2.4.4
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If a function is given by a formula, we may be able to find the inverse by solving
the formula for the input variable(s). For example, the inverse of the function

P |

5

y = (from R to R)

is
x =5y +1.
Now consider the case of a linear transformation 7 from R” to R” given by
y =T(X) = A%,

where A is an n x n matrix. (The case of an n x m matrix will be discussed in
Exercise 48.)

According to Definition 2.4.1, the linear transformation y = T(¥) = AX is
invertible if the linear system

AZ =73

has a unique solution ¥ in R” for all y in the vector space R”. By Theorem 1.3.4,
this is the case if (and only if) rank(A) = » or, equivalently, if

100 ...0
010 ..0
mef(A)= |0 0 1 0 =p,.
000 1

Invertible matrices

A square matrix A is said to be invertible if the linear transformation
y = T(¥) = AX is invertible. In this case, the matrix'® of 7~ is denoted by
A~ If the linear transformation y = 7'(X¥) = AX is invertible, then its inverse is
¥=T1(3)=A"13.

Invertibility
An n x n matrix A is invertible if (and only if)
ref(A) = I,
or, equivalently, if
rank(A) = n.

The following proposition follows directly from Theorem 1.3.4 and Exam-
ple 1.3.3d. .

Invertibility and linear systems
Let A be an n x n matrix.

a. Consider a vector b in R”. If A is invertible, then the system AZ = b
has the unique solution % = A~1b. If A is noninvertible, then the system
AX = b has infinitely many solutions or none.

L4

10The inverse transformation is linear. See Exercise 2.2.29.
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Theorem 2.4.4

EXAMPLE |

Invertibility and linear systems ( Continued)

b. Consider the spemal case when b = 0. The system AX = 0 has
as a solution. If A is invertible, then this is the only solution.
noninvertible, then the system A% = 0 has infinitely many soluti

Is the matrix
111
A=1{2 3 2
3 8 2
invertible?
Solution
1 1 1 1 1 1] -1
2 3 2| =2) — 0 1 0 —
3 8 2| -30 0 5 —1] -50n
10 1 1 0 17— 100
01 O - |0 1 0 10 1 0|=5"*
LOO—1+(—1) 0 0 1 0 0 1
Matrix A is invertible since rref(A) = Is.
Let’s find the inverse of the matrix
1 1 1
A=12 3 2
3 8 2
in Example 1 or, equivalently, the inverse of the linear transformation
»n x4+ X2+ X3
y = AX or ya| = |2x1 +3x2+ 2%3
V3 3x1 + 8x2 + 2x31°

To find the inverse transformation, we solve this system for the input "
X7, and x3:

x1+ X+ X3= 1 —
2x1 + 3x2 + 2x3~= 2 =20
3x; 4 8x2 + 2x3 = y3| 3@
X1+ X+ x3= N — )
x2 =21+ n —
Sxp — X3 =—3n + y3| —5(ID)
X1 + x3= 31— N -
x2 =21+ »n
— x3= Ty —5n+y| 1D
x1 + ;= 3n—- »n — (1)
x2 =-2y1+ »n —
x3=—Ty1+ 52— ¥
x1 = 10y; —6y2 +¥3
X2 ==2n+ N .
x3=—Ty1+5y2— 3
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We have found the inverse transformation; its matrix is

; 10 —6 1
e B=A1l=[-—2 1 0
1 & -7 5 -1
. x We can write the preceding computations in matrix form:
1 11(100] — [11 1} 100] -@
. 2321010 20|01 0} -210 —
- 382100 1] =30 [0 5 -1} -3 0 1} =500
; 10 1} 3 -1t 0] — 1 01} 3 -1 0] —@D
. 0 1 2 10 010/-2 1 0 —
: 00 -1{ 7 =5 1] =(=D [0 0 117 5 -1
-8 1 0 0} 10 —6 1]
A 0102 1 0
: 00 1}{-7 5 =1]
. L
N This process can be described succinctly as follows.
f(A) =
II'I 1 Theorem 2.4.5 Finding the inverse of a matrix
™ Sl To find the inverse of an n x n matrix A, form the  x (2n) matrix [A | I,] and
I.' , compute rref [A | I, ].
: 'I' ;_ o Ifrref [A | I,] isof the form [ 1, | B], then A is invertible, and A" 1=B.
o If rref [A E I,,] is of another form (i.e., its left half fails to be 1,,), then A
i is not invertible. Note that the left half of rref [ A | I, ] is mref(A).
|
l'l Next let’s discuss some algebraic rules for matrix inversion.
| 8 o Consider an invertible linear transformation 7' (¥) = Ax from R”" to R”. By
S Definition 2.4.1, the equation T~ (7 (¥)) = X holds for all X in R”. Written in
= matrix form, this equation reads A~ AX = X = I,X. It follows that ATlA =
bles x1, R I,,. Likewise, we can show that AA™! = I,
W
| vl i
B Theorem 2.4.6 Multiplying with the inverse
}-. llir,- For an invertible # x n matrix A,
| A AT'A=1, and AA7! =1,
'+
| o If A and B are invertible n x n matrices, is B A invertible as well? If so, what
g is its inverse?
= To find the inverse of the linear transformation
| e 5 = BAZ,
o
| 8 ot > we solve the equation for X in two steps. First, we multiply both sides of the

A equation by B! from the left:
A B~y = BIBAF = I,AX = A%

Now, we multiply by A~! from the left:

-

‘N A7T'B 1y = A1AXY =X,




92 CHAPTER2 Linear Transformations

This computation shows that the linear transformation

= BAX

<

is invertible and that its inverse is

7=A"'B7'3.

Theorem 2.4.7 The inverse of a product of matrices
i If A and B are invertible n X 7 matrices, then BA is invertible as well, ar
: (BA)™ = A7'B7"

Pay attention to the order of the matrices. (Order matters!)

I To verify this result, we can multiply A~1B~! by BA (in either orC
check that the result is In:

b BAA-'B~' = BI,B' = BB ™' =L, and
: A'B'BA=AT'A= L

Everything works out!

i To understand the order of the factors in the formula (B A7l = A'B
i about our French coast guard story again.

1 To recover the actual position X from the doubly encoded position z
b apply the decoding transformation y = B~Z and then the decoding trans.
i : 3 = A~13. The inverse of Z = BAZ is therefore ¥ = A B7'Z, as illv

P Figure 3.
i
i
| Paris: Z
1
:;‘,, B—l
b
3
I i BA| |A™B™ Marseille: ¥
W i
[ A
i
, Boat: ¥
Figure 3

The following result is often useful in finding inverses:

Theorem 2.4.8 A criterion for invertibility

Let Aand Bbeiwon X1 matrices such that
BA =1I,.

Then

a. A and B are both invertible,
b. A-'=Band B! = A, and
¢c. AB=1,.
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Tt follows from the definition of an invertible function that if AB = I, and
BA = I, then A and B are inverses; thatis, A = Bl and B = A~!. Theorem 2.4.8
makes the point that the equation BA = I, alone guarantees that A and B are
inverses. Exercise 107 illustrates the significance of this claim.

To demonstrate that A is invertible, it suffices to show that the linear system AZ=0
has only the solution ¥ = O (by Theorem 2.4.4b). If we multiply the equation
A% = O by B from the left, we find that BAX = B0 = 0. It follows that ¥ =
I,X = BAX = 0, as claimed. Therefore, A is invertible. If we multiply the equation
BA = I, by A~! from the right, we find that B = A~!. Matrix B, being the inverse
of A, is itself invertible, and B~! = (A~!)7! = A. See Definition 2.4.1. Finally,
AB = AA1 =1,.

You can use Theorem 2.4.8 to check your work when computing the inverse of
a matrix. Earlier in this section we claimed that

10 —6 1 1 1 1
B=1|-2 1 0 is the inverse of A=12 3 2
-7 5 -1 3 8 2
Let’s use Theorem 2.4.8b to check our work:
10 -6 1 1 1 1 1 0 0
BA=1|-2 1 012 3 2(=1(0 1 0] =1.
~7 5 -1 3 8 2 0 0 1 H

Suppose A, B, and C are three n x » matrices such that ABC = I,,. Show that B is
invertible, and express B 1interms of A and C.

Solution

Write ABC = (AB)C = I,. We have C(AB) = I, by Theorem 2.4.8c. Since
matrix multiplication is associative, we can write (CA)B = I,. Applying Theo-
rem 2.4.8 again, we conclude that B is invertible, and B~! = CA. |

‘ . a b d —b|lla b
Foranarb1trary2x2matr1xA_[c d},computetheproduct [—c a] [c d]'

When is A invertible? If so, what is A™1?

Solution
d —-bila b ad — bc 0
{——c a] [c d] N [ 0 ad—bc] = (@d —bo)hy.
. 1 d —b a b
If ad — bc # 0, we can write (ad—bc [—c a]) [C d] = 5.
~ N o’

B A
It now follows from Theorem 2.4.8 that- A is invertible, with A~ =

1 -
wd — be [_i Z . Conversely, if A is invertible, then we can multiply the

equation [_i _Z] {‘; s] = (ad — bc)I with A~! from the right, finding

_i _Z = (ad — bc)A~!. Since some of the scalars a, b, ¢, d are nonzero
(being the entries of the invertible matrix A), it follows that ad — bc # 0. (]
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Inverse and determinant of a 2 x 2 matrix

a b
a=l
is invertible if (and only if) ad — be # 0.

Quantity ad — bc is called the determi

a b
det(A) = det L d] =ad — bec.

b. If
a b
a=[t

is invertible, then

[a b]"_ 1 {d —b]_ 1 {d —b]
¢ d| T ad—bcl|—¢ al = det(d) |—¢ @

Theorem 2.4.9

a. The 2 % 2 matrix

nant of A, written det(

In Chapter 6 we will introduce the determinant of a square matrix o
size, and we will generalize the results of Theorem 2.4.9 to n X n m&

Theorems 6.2.4 and 6.3.9.
What is the geometrical interpretation of the determinant of a2 X 2

, and consider the column vectors U = and W

Write A =

. - - —C
tumns out to be helpful to introduce the auxiliary vector Usot = [ a] ,C

e the (oriented)

rotating vector U = ﬂ through an angle of % Let6b

Figure 4 N .
$to b, with — <6 < 7. See Figure 4. Then
- - - T - -
ot = ad — be = - = B cos (5 —0) 181 = 1308
step 2 step 3
In steps 2 and 3 we use the definition of the dot product and its geomy
nition A.4 in the Appendix.

pretation. See Defi

Theorem 2.4.10 Geometrical interpretation of the determinant of a 2 x 2 matrix

A=V W]isa2 x2 matrix with nonzero columns 7 and W, the
detA=det[d W)= W1l sin6llw I,

where 6 is the oriented angle from 3 to , with —7 <6 < 7. 1t foll

o |detA| = ||¥] Isinb] ]l is the area of the parallelogram st

and . See Figure 5,
o det A = Oif U and i are parallel, meaning that & =0

. detA>Oif0<9<n,and
. detA<0if—7t<9<0.

] sin 6]

orf =

Figure 5

In Chapter 6 we will go a step further and interpret det A in term

transformation T (X) = AX.



See

LA?
;
It

d by

from

inter-

at

by ¥

2.4 The Inverse of a Linear Transformation 95

EXAMPLE 4 Is the matrix A = [1 3} invertible? If so, find the inverse. Interpret det A geo-

Figure 6

2 1
metrically.

Solution

We find the determinant det(A) = 1-1—3.2 = —5 # (, so that A is indeed
invertible, by Theorem 2.4.9a. Then

o L [d -p]_ 1 1 -3 _[-5 2
TdetA |-c  a] (=5 -2 1f |2 _1p
, by Theorem 2.4.9b. ™~
Furthermore, |det A| = 5 is the area of the shaded parallelogram in Figure 6,
and det A is negative since the angle 8 from ¥ to w is negative. |

EXAMPLE 5 For which values of the constant k is the matrix 4 = [1 ; k 3 E k} invertible?

Solution
By Theorem 2.4.9a, the matrix A fails to be invertible if det A = 0. Now

2

1—k%
detA_det[ 4 3_k

}:(1—k)(3—k)—2-4

=k —4k-5=(k-5k(+1) =0

when k = 5 or k = —1. Thus, A is invertible for all values of k except k = 5 and
k=—-1. |

EXAMPLE 6 Consider a matrix A that represents the reflection about a line L in the plane. Use

#=A(AT)

Figure 8

the determinant to verify that A is invertible. Find A~!. Explain your answer con-
ceptually, and interpret the determinant geometrically.

Solution
By Definition 2.2.2, a reflection matrix is of the form A = [Z _Z:I , where
%>+ b* = 1. Now det A = det Z _Z = —a? — b2 = —1. It turns out that
1 —-a b a b
. . . _1 — — —
A is invertible, and A= = ——(_1) [_ b a} b —a A. It makes good

sense that A is its own inverse, since A(AX) = ¥ for all ¥ in R2, by definition of a
reflection. See Figure 7.

“To interpret the determinant geometrically, recall that 7 = [Z} = AEI and

-

w = [_SJ = Aé;. The parallelogram spanned by ¥ and @ is actually a unit

. . T . .
square, with area 1 = |det A, and 6 is — — since the reflection about L reverses the
orientation of an angle. See Figure 8. &
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The Inverse of a Block Matrix (Optional)

We will conclude this chapter with two examples involving block matrice
fresh your memory, take another look at Theorem 2.3.9.
EXAMPLE 7  Let A be a block matrix
Apn A
A=
{ 0 Azz] ’

where Ajjisann X 7 matrix, Az is anm X m matrix, and Ay is ann X7

a. For which choices of Ay1, A1, and A2 is A invertible?
b. If A is invertible, what is A~! (in terms of Ay, A, An)?

T

Solution
We are looking for an (n + m) x (n+m) matrix B such that

L, O
BA= n+m=[5 Ii\
m

Let us partition B in the same way as A:

By 312}
B = ,
[321 By

where Bip is n x n, B is m x m, and so on. The fact that B is the ir

i _ means that
! Bi1 Bl [Au An I, O
{ By Bn|| 0 Ax 0 In}’

or, using Theorem 2.39,

N

i

@v

{I' | BiAn = In
| BiAp + BpAn= 0
£ ByAn= 0}
I By Az + BnAn =In

‘i We have to solve for the blocks Bjj. Applying Theorem 2.4.8 t0 '
" ByAy = In, we find that Ay is iavertible, and By = A7, - Equ

;'f' q implies that By; = 0A7] = 0. Next, Equation 4 simplifies to BnA
W Theorem 2.4.8, Ay is invertible, and By = A, . Lastly, Equatio!
A1_11A12 + BppAxpn = 0, or Bi2A»n = —A1—11A12, or Bpp = ——Al_ll

conclude that

a. A is invertible if (and only if) both A and Ay are invertible
is imposed on A1z), and

b. If A is invertible, then its inverse is

Al = [Al_ll ‘A1_1113112A521] )
0 A
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Verify this result for the following example:

-1

11 1 2 3 2 -1 2 1 0
12456 -1 1 | -3 -3 -3
EXAMPLE 8 00/ 100| = 0 0 1 0 0 =
0 0 010 0 o 0 1 0
0 0 0 01 0 0 0O O 1
EXERCISES 2.4
GOAL Apply the conc'ept of an.invertible functiorz. De'- 16. y; = 3x1 + 5x2 17. y1 = x + 2%
termine whether a matrix (or a linear transformation) is — —
. ; . g y2 =5x1 + 8x3 y2 =4x1 + 8x2
invertible, and find the inverse if it exists.
Decide whether the matrices in Exercises 1 through 15 are 18. yi =2 19. =20+ 2+ x
invertible. If they are, find the inverse. Do the computa- Y2 =Xx3 Y2 = %1 + 2x3 + 3x3
tions with paper and pencil. Show all your work. y3=x y3 =1 + 4x2 + 9x3
_ R 20. yy= x14+3x+ 3x3
1. 2 3] 2. 11 y2= x1+4x;+ 8x3
5 8 1 3 =2x1 + Tx3 + 12x3
o 2 [1 2 3] Which of lihe Junctions f from R to R in Exercises 21
3. 1 1} 4. 10 1 2 through 24'are invertible?
- 0 0 1] .
i i i i 21, f(x) = x2 22, f(x)=2%
1 2 2 1 2 1
5. 3 1 6. 11 3 2 23 f)y=x3+x 24, f(x)=x>—x
1 3 0 1
- - - - Which of the (nonlinear) transformations from R? to R2
(1 2 3] M 1 1] in Exercises 25 through 27 are invertible? Find the inverse
7. |10 0 2 8 (1 2 3 if it exists.
0 0 3 1 3 6 3
A S N A RS
[ 1] [0 0 1] y2 *2 y2 x] +x2
9 1 10. |0 1 - [)’1] _ [xl +x2J
_1 1 1_ _1 0 OJ V2 X1 X
1 0 1] 2 5 0 0 .28. Find the inverse of the linear transformation
11. |10 1 0 '12 13 00
0 0 1) "o o1 2 x1 fé 13
o0 25 2 x| -
B T X3 e 8 +x 9
1 0 0 O |t 1 2 3 X4 5 4
21 0 0 / 0 -1 0 O
13. 8 3
3210 (1 4. 2 2 5 4 _2 )
4 3 21 — 0 3 01 T3 g T4
" 3
o2 3 4
15 |2 4 7 1 from R* to R*.
3 7 14 25
4 11 25 50 29. For which values of the constant k is the following ma-

trix invertible?

Decide whether the linear transformations in Exercises 16
through 20 are invertible. Find the inverse transformation 1 1 1
il
4 k?

if it exists. Do the computations with paper and pencil.
Show all your work.
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ing matrix invertible?

@For which values of the constants b and c is the follow-

0 1 b
-1 0 c
-b —c O
31. For which values of the constants a, b, and ¢ is the fol-
lowing matrix invertible?
0 a b
—a 0 ¢
~-b —c O

32. Find all matrices [‘z Z] such that ad — be = 1 and

Al = A,

33. Consider the matrices of the form A = [Z _ﬂ,

where a

and b are arbitrary constants. For which val-

ues of g and bis A7} = A?

34. Consider the diagonal matrix

35.

36.

37.

0 0
A= b 0
0 ¢

o o R

For which values of @, b,and ¢ is A invertible? If it
is invertible, what is A2

b. For which values of the diagonal elements is a dia-

gonal matrix (of arbitrary size) invertible?

a. Consider the upper triangular 3 X 3 matrix

a b ¢
A=10 d e
0o 0 f

For which values of a, b, ¢, d, e,and f is A invert-
ible?

b. More generally, when is an upper triangular matrix

(of arbitrary size) invertible?

¢. If an upper triangular matrix is invertible, is its in-
verse an upper triangular matrix as well?

d. When is a lower triangular matrix invertible?

To determine whether a square matrix A is invertible,
it is not always necessary to bring it into reduced row-
echelon form. Instead, reduce A to (upper of lower) tri-
angular form, using elementary Tow operations. Show
that A is invertible if (and only if) all entries on the di-
agonal of this triangular form are nonzero.

If A is an invertible matrix and ¢ is a nonzero scalar, is
the matrix cA invertible? If so, what is the relationship

between A~1 and (cA) ™17

38. Find A" lfor A= Ll)

A

39. Consider a square matrix that differs from !
matrix at just one entry, off the diagonal, for

100
010
1

101

In general, is a matrix M of this form inves
what is the M2

40. Show that if a square matrix A has two equ
then A is not invertible.

41. Which of the following linear transformat
R3 to R3 are invertible? Find the inverse if

a.
b.
c.

d.

tors v]

Reflection about a plane
Orthogonal projection onto a plane
Scaling by a factor of 5 [i.e., T@) =5

Rotation about an axis

42. A square matrix is called a permutation m
tains a 1 exactly once in each row and in
with all other entries being 0. Examples a

0 0
1 0
0 1

1
0
0

Are permutation matrices invertible? If so

a permutation matrix as well?

43. Consider two invertible n X n matrices /
linear transformation ¥ = A(BX) invertit
is the inverse? Hint: Solve the equation y
for B¥ and then for X.

44,

45,

Consider the n x n matrix Mp, withn > !
all integers 1,2, 3, ..., n? as its entries
quence, column by column; for example

My =

1 5
2 6
3 7
4 8

9
10
11

12

a. Determine the rank of Ma.
b. Determine the rank of Mp.

¢. For which n is My invertible?

13
14
15
16

To gauge the complexity of a computati
ematicians and computer scientists cou
elementary operations (additions, sub
plications, and divisions) required. Fo
we will sometimes consider multiplic
sions only, referring to those jointly

operations. As an example, we examil
inverting a 2 X 2 matrix by eliminatios
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46.

47.

—
o
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0| =+ a, requires 2 multiplicative
1 operations: b/a and 1/a

1 % e 0| (whereb' =b/a,ande = 1/a)
¢ d 0 1| — c (D), requires 2 multiplicative
operations: cb’ and ce

0 d | g 1] =+ d’, requires 2 multiplicative
operations

[1 14 e 0

1 ¥ e 0 —p' (), requires 2 multiplicative
0 1 1g h operations

|
1 01| ¢ f
011 g &

The whole process requires eight multiplicative opera-

tions. Note that we do not count operations with pre-

dictable results, such as la,0a, afa, 0/a.

a. How many multiplicative operations are required to
inverta3 x 3 matrix by elimination?

b. How many multiplicative operations are required to
invert an # X n matrix by elimination?

¢. If it takes a slow hand-held calculator 1 second to
invert a 3 x 3 matrix, how long will it take the same
calculator to invert a 12 x 12 matrix? Assume that
the matrices are inverted by Gauss—Jordan elimina-
tion and that the duration of the computation is pro-
portional to the number of multiplications and divi-
sions involved.

Consider the linear system
AX = b,

where A is an invertible matrix. We can solve this sys-
tem in two different ways:
e By finding the reduced row-echelon form of the aug-

mented matrix [A E b] ,
* By computing A~! and using the formula ¥ = A1,
In general, which approach requires fewer multiplica-
tive operations? See Exercise 45.

Give an example of a noninvertible function f from R
to R and a number b such that the equation

fx)=b

has a unique solution.

Consider an invertible linear transformation T(¥) =
AX from R™ to R”, with inverse L = 7~! from R" to
R™. In Exercise 2.2.29 we show that L is a ljnear trans-
formation, so that L(3) = BY for some m x n matrix
B. Use the equations BA = I, and AB = I, to show
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that » = m. Hint: Think abgut the number of solutions
of the linear systems A¥ = 0 and By = 0.

/gj Input—Output Analysis. (This exercise builds on Exer-

cises 1.1.24, 1.2.39, 1.2.40, and 1.2.41). Consider the
industries Iy, Jo, ..., J, in an economy. Suppose the
consumer demand vector is b, the output vector is X,
and the demand vector of the jth industry is ¥;. (The
ith component a;; of ¥ is the demand industry J j puts
on industry J;, per unit of output of 7-) As we have seen
in Exercise 1.2.40, the output ¥ just meets the aggregate
- demand if

hx]f)'l +xlg+ - FXgUp+b= X
aggregate demand output

This equation can be written more succinctly as

. X1
| 12
- - - 2 7 -
v U2 U . +b=x,
I | )
Xn

or A% + b = . The matrix A is called the technology
matrix of this economy; its coefficients a; ; describe the
interindustry demand, which depends on the technology
used in the production process. The equation

Ai+b=7%
describes a linear system, which we can write in the
customary form:

X—A%X =b
Li— A% =b
(I, — A)¥ = b.

I we want to know the output X required to satisfy a
given consumer demand & (this was our objective in
the previous exercises), we can solve this linear system,
preferably via the augmented matrix. '

In ec_gnomics, however, we often ask other ques-
tions: If b changes, how will ¥ change in response?
If the consumer demand on one industry increases by
1 unit and the consumer demand on the other indus-
tries remains unchanged, how will ¥ change?!! If we

11 The relevance of questions like these became particularly
clear during World War II, when the demand on certain
industries suddenly changed dramatically. When U.S.
President F. D. Roosevelt asked for 50,000 airplanes to be
built, it was easy enough to predict that the country would
have to produce more aluminum. Unexpectedly, the demand
for copper dramatically increased (why?). A copper shortage
then occurred, which was solved by borrowing silver from
Fort Knox. People realized that input—output analysis can be
effective in modeling and predicting chains of increased
demand like this. After World War 11, this technique rapidly
gained acceptance and was soon used to model the economies
of more than 50 countries.
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50.

51.

ask questions like these, we think of the output Xasa
function of the consumer demand b.
If the matrix (I, —A) is invertible,? we can express

% as a function of b (in fact, as a linear transformation):
= —A) b

a. Consider the example of the economy of Israel in
1958 (discussed in Exercise 1.2.41). Find the tech-
nology matrix A, the matrix (I, — A), and its inverse
(I, — A

b. In the example discussed in part (a), sUppose the
consumer demand on agriculture (Industry Dis 1
unit (1 million pounds), and the demands on the
other two industries are zero. What output X is re-
quired in this case? How does your answer relate to
the matrix (I, — A)™'?

¢. Explain, in terms of economics, why the diagonal
elements of the matrix (I — A)~! you found in part
() must be at least 1.

d. If the consumer demand on manufacturing increases
by 1 (from whatever it was), and the consumer de-
mand on the other two industries remains the same,
how will the output have to change? How does your
answer relate to the matrix (In — A1

e. Using your answers in parts (a) through (d) as a
guide, explain in general (not just for this exam-
ple) what the columns and the entries of the matrix
(I, — A)~! tell you, in terms of economics. Those
who have studied multivariable calculus may wish
to consider the partial derivatives

3x,~
obj '

This exercise refers to Exercise 49a. Consider the en-
try k = a1 = 0.293 of the technology matrix A. Ver-
ify that the entry in the first row and the first column
of (I, — A)~! is the value of the geometrical series
1+ k + k2 + - Interpret this observation. in terms
of economics.

a. Consider ann X m matrix A with rank(A) < n.
Show that there exists a vector p in R" such that
the system AX = b is inconsistent. Hint: For E =
tref(A), show that there exists vector ¢ in R" such
that the system E % = ¢ is inconsistent; then, “work
backward.”

b. Consider ann X m matrix A with n > m. Show that
there exists 2 vector b in R? such that the system

A3 = b is inconsistent.

52. For

AW =
0w B 2

————
12pis will always be the case for a “productive” economy. See
Exercise 103.

find a vector b in R* such that the system AX
inconsistent. See Exercise 51.

3
53, LetA = [3

a. Find ascalar A (lambda) such that the matris
fails to be invertible. There are two solution:
one and use it in parts (b) and (¢)-

b. For the A you chose in part (2), find th
A — Al; then find a nonzero vector X !
(A—Arl)i =0 (This can be done, since
fails to be invertible.)

¢. Note that the equation (A— A)E = 0ca
ten as AX — AX = 0, or AX = AX. Chec
equation AX = A% holds for your X fro1
and your ¥ from part (b).

54, LetA = __:15 10

a scalar A and a nonzero vector % such that A

;] in all parts of this problem.

. Using Exercise 53 as a;

In Exercises 55 through 65, show that the giv
A is invertible, and find the inverse. Interpret
transformation T (%) = Ax and the inverse t
tion T-1(5) = A™1Y geometrically. Interpret
metrically. In your figure, show the angle 8 and

% and i introduced in Theorem 2.4.10.

2 0 cosq —SiI
55 {0 2] o Lina co
57, [cc.)sa s1na} 58, [—3 0}
sinag —cosc 0 -3
0.6 —0.38 —08 0.6
59 \:0.8 0.6] 60. [ 06 08
1 1 1 -1
61. {_1 1] 62. 0 1]
3 4 3 4
63. { ! 3] 64. {_ ! 3]

1 0
. [0 ]

66. Consider two n X 1 matrices A and B
product AB is invertible. Show that th
and B are both invertible. Hint: AB(AB
(AB)"'AB = I. Use Theorem 24.8.

For two invertible n xn matrices A and
which of the formulas stated in Exercises {
are necessarily true.

67. (A+B):=A>+2AB+ B?

68. (A—B)YA+B)= A2 — B?

69. A + B is invertible, and (A + By ! =
70. A? is invertible, and (aH~1=(a"1)?
71. ABB AT =1n
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72. ABA~1 =B

73. (ABA™1)3 = AB341

4. I, + A, + A H =2, + A+ A1

75. A~!B is invertible, and (A~1B)~! = B~14
@Fmd all linear transformations 7 from R2 to &2 such

71.

78.

79.

that

1] 2] 21 [1]
2] T 1 and T[s_" 3

T

Hint: We are looking for the 2 x 2 matrices A such that

- 5 o
d A =
an [5—

(1] _[2
A2 = 1

L=d L™

These two equations can be combined to form the ma-

trix equation
1 2 2 1
2l 5= )

Using the last exercise as a guide, justify the following
statement:

Let U1, 99, ..., Um be vectors in R™ such that the ma-
trix

is invertible. Let 1, Wy, ..., Wy be arbitrary vectors
in R*. Then there exists a unique linear transforma-
tion T from R™ to R” such that T (¥;) = uy;, for all
i = 1,...,m. Find the matrix A of this transformation
in terms of § and

Lo |
B=|uy w2 - Wm

Find the matrix A of the linear transformation T from
R? to R3 with

-]

Compare with Exercise 77.

7 1
3 3

Find the matrix A of the linear transformation 7 from
R? to R? with

r[]=2[] wo 7(]-5[3]

Compare with Exercise 77.

- Consider the regular tetrahedron sketched belo'w, whose

center is at the origin.

81.

82.
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1]

1
P1=|:—J P2=I:_11
-1 i

Let T from R> to R? be the rotation about the axis
through the points 0 and P, that transforms P; into P3.
Find the images of the four corners of the tetrahedron

under this transformation.

T
Py —

Pl hd P3
P, —
Py —
Let L from R? to R? be the reflection about the plane

through the points 0, Py, and Ps. Find the images of the

four comers of the tetrahedron under this transformation.

L
Py —

P —
P —
Py —
Describe the transformations -in parts (a) through
(c) geometrically.
a 771 b. L7!
¢. T%2 =T o T (the composite of T with itself)

d. Find the images of the four corners under the trans-
formations 7 o L and L o T. Are the two transforma-
tions the same?

Py ILC—J>L Py l£>T
P - P -
P — P, —
P3 —> P3 —

e. Find the images of the four corners under the trans-
formation L o T o L. Describe this transformation
geometrically.

Find the matrices of the transformations T and L defined
in Exercise 80.

Consider the matrix
1 0 0
E=]|-3 1 0
01

a
A=]d
8
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83.

84.

85.

86.

87.

88.

a. Compute EA. Comment on the relationship be-
tween A and EA, in terms of the technique of elim-
ination we learned in Section 1.2.

b. Consider the matrix

1 00
E=|0 % O
0 0 1

and an arbitrary 3 x3 matrix A. Compute EA. Com-
ment on the relationship between Aand EA.

¢. Can you think of 23 x 3 mafrix E such that EA is
obtained from A by swapping the last two rows (for
any 3 x 3 matrix A)?

d. The matrices of the forms introduced in parts (a),
(b), and (c) are called elementary: Ann X 1 matrix
E is elementary if it can be obtained from I, by pet-
forming one of the three elementary row operations
on I,. Describe the format of the three types of ele-
mentary matrices.

Are elementary matrices invertible? If so, is the inverse
of an elementary matrix elementary as well? Explain
the significance of your answers in terms of elementary
row operations.

a. Justify the following: If A is an n x m matrix, then
there exist elementary n X 7 matrices E1, E2, -+ >
Ep such that

rref(A) = E1E2' .. EPA.

b. Find such elementary matrices E1, E2, -+ +» Ep for

A=R g]

a. Justify the following: If A is an n x m matrix, then
there exists an invertible 7 X 7 matrix S such that

mef(A) = SA.

b. Find such an invertible matrix S for

A=B ‘;]

a. Justify the following: Any invertible matrix is a
product of elementary matrices.

b. Wiite A = [O 2

1 3] as a product of elementary

matrices.

Write all possible forms of elementary 2 x 2 matrices
E. Tn each case, describe the transformation ¥ = EX
geometrically.

1
Consider an invertible 7 X matrix A and an n X r ma-
{rix B. A certain sequence of elementary row operations
transforms A into Ir.
a. What do you get when you apply the same TOW Op-
erations in the same order to the matrix AB?

89.

90.

91.

b. What do you get when you apply the same
erations to 1?7

Is the product of two lower triangular matrices
triangular matrix as well? Explain your answel

Consider the matrix
1 2 3
A=12 6 7 1.
2 2 4

a. Find lower triangular elementary mat!
Ezy.oor Em such that the product

Ep:--E2B1A

is an upper triangular matrix U. Hint: Us
tary row operations to eliminate the ent
the diagonal of A.

b. Find lower triangular elementary mal
My, ..., Mn and an upper triangular mal
that

A=M1M2---MmU.

¢. Find a lower triangular matrix L and an!
gular matrix U such that

A=LU.

Such a representation of an invertibl
called an LU-factorization. The meth
in this exercise to find an LU-factoriz
streamlined somewhat, but we have 8
jor ideas. An U -factorization (as intrt
does not always exist. See Exercise 92.
d. Find a lower triangular matrix L with -
agonal, an upper triangular matrix U
the diagonal, and a diagonal matrix
A = LDU. Such a representation of
matrix is called an LDU-factorization

Knowing an LU-factorization of a matri
much easier to solve a linear system

-

AX =Db.
Consider the L U -factorization
1 2 -1 4
-3 -5 6 -5

1 4 6 20
-1 6 20 43

1 0 0 0][t 2
-3 1 o oofjo1
=l 12 10(00
1 8 -5 1/]0 0
=LU,
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92.

93.

Suppose we have to solve the system A¥ = LUX = b,
where
-3
14
9
33

SN
I

a. Set$ = U, and solve the system Ly = b, by for-
ward substitution (finding first y1, then y», etc.). Do
this using paper and pencil. Show all your work.

b. Solve the system UX = ¥, using back substitution,
to find the solution X of the system AX = b. Do this
using paper and pencil. Show all your work.

y
/ \
X > b
A

Show that the matrix A = [ (1) (I)J cannot be written in

the form A = LU, where L is lower triangular and U
is upper triangular.

In this exercise we will examine which invertible n x n
matrices A admit an LU-factorization A = LU, as dis-
cussed in Exercise 90. The following definition will be
useful: Form = 1, ..., n, the principal submatrix A™
of A is obtained by omitting all rows and columns of A
past the mth. For example, the matrix

1 2 3
A=14 5 6
7 8 7
has the principal submatrices
L 2 1 2 3
A(1)=[1],A(2)=[4 5],A(3)=A= 4 56
7 8 7

We will show that an invertible » x » matrix A admits
an LU-factorization A = LU if (and only if) all its
principal submatrices are invertible,

a. let A = LU be an LU-factorization of an
n x n matrix A. Use block matrices to show that
A — p Wy form —1,..., n.

b. Use part (a) to show that if an invertible n x n ma-
trix A has an LU -factorization, then all its principal
submatrices A™) are invertible.

¢. Consider an n x n matrix A whose principal
submatrices are all invertible. Show that A ad-
mits an LU-factorization. Hint: By induction, you
can assume that A®~D has an LU-factorization
A~1D — 1. Use block matrices to find an LU-
factorization for A. Alternatively, you can explain
this result in terms of Gauss—Jordan elimination (if

9.

95.

96.

97.

98.

99.

101.

102.
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all principal submatrices are invertible, then no row
swaps are required).

a. Show that if an invertible » x n matrix A ad-
mits an LU-factorization, then it admits an LDU -
factorization. See Exercise 90d.

b. Show that if an invertible n X n matrix A ad-
mits an L DU -factorization, then this factorization
is unique. Hint: Suppose that A = LiDWwU; =
LyDyUs. Then UpUs Y = Dy 1Ly Ly Dy is diag-
onal (why?). Conclude that U = Uy.

Consider a block matrix

_ |An 0
A—{O Azz]’

where A1; and Ay are square matrices. For which
choices of Aj; and Aj; is A invertible? In these cases,
what is A712

Consider a block matrix

A1 0 ]
A= ,
[Am App

where A1) and Ajp are square matrices. For which
choices of A11, Apy, and Ayp is A invertible? In these
cases, what is A™1?

Consider the block matrix
A= A A Aps
0 0 Axnl|’

where Aj; is an invertible matrix. Determine the rank
of A in terms of the ranks of the blocks Ay, A1, Aj3,
and Ajs.

Consider the block matrix
A I, ©
w 1|’
where ¥ is a vector in R”, and ¥ is a row vector with n

components. For which choices of ¥ and i is A invert-
ible? In these cases, what is A™1?

Find all invertible  x »n matrices A such that A% = A.

Find a nonzero n x n matrix A with identical entries
such that A2 = A.

Consider two n x n matrices A and B whose entries are
positive or zero. Suppose that all entries of A are less
than or equal to s, and all column sums of B are less
than or equal to r (the jth column sum of a matrix is
the sum of all the entries in its jth column). Show that
all entries of the matrix A B are less than or equal to s7.

(This exercise. builds on Exercise 101.) Consider an

n X n matrix A whose entries are positive or zero. Sup-

pose that all column sums of A are less than 1. Let » be

the largest column sum of A.

a. Show that the entries of A™ are less than or equal to
r™, for all positive integers m.
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b. Show that
lim A" =0

m—>co
(meaning that all entries of A™ approach zero).
¢. Show that the infinite series

L, +A+AT+ AT+

converges (eniry by entry).
d. Compute the product
Iy — A)(In + A+ A2+ +A™).

Simplify the result. Then let m go to infinity, and
thus show that

(I,,—A)’l=In+A+A2+---+A’"+---.

>é. (This exercise builds on Exercises 49, 101, and 102.)
a. Consider the industries J1, ..., J, in an economy.

We say that industry J; is productive if the jth col-
umn sum of the technology matrix A is less than 1.
What does this mean in terms of economics?

b. We say that an economy is productive if all of its
industries are productive. Exercise 102 shows that
if A is the technology matrix of 2 productive econ-
omy, then the matrix I — A is invertible. What does
this result tell you about the ability of a productive
economy to satisfy consumer demand?

c. Interpret the formula

= A =L+ A+ A+ AT
derived in Exercise 102d in terms of economics.

The color of light can be represented in a vector

R
G s
B

where R = amount of red, G = amount of green, and
B = amount of blue. The human eye and the brain
transform the incoming signal into the signal

104.

1
L H
S
where
. . R+G+B
intensity I = —-T—
long-wave signal L = R-G
R+G
short-wave signal S = B — -; .
a. Find the matrix P representing the transformation
from
R I
G to L
B S

&

Consider a pair of yellow sunglasses for we
that cuts out all blue light and passes al
green light. Find the 3 x 3 matrix A thats
the transformation incoming light under;
passes through the sunglasses. All the eniri
matrix A will be 0’s and 1’s.
Find the matrix for the composite trans
that light undergoes as it first passes throug
glasses and then the eye.
As you put on the sunglasses, the signal y
(intensity, long- and short-wave signals)
a transformation. Find the matrix M of th
mation. Feel free to use technology.

Light passes through eyes only.

| P
A
~
VA
A
Light passes through glasses and p
then through eyes.

A village is divided into three mutual
groups called clans. Each person in the vil
to a clan, and this identification is perm:

are rigid rules concerning martiage: A per
clan can only mairy a person from one othe
rules are encoded in the matrix A below.

the 2-3 entry is 1 indicates that marriage b
from clan T and a woman from clan 1L is

clan of a child is determined by the mot
indicated by the matrix B. According to
siblings belong to the same clan.

Husband’s clan

I 1 IO

o 1 011
a=lo o (@|n Wif

1 o0 ofm 9

Mother’s clan

I 1 I

1 0 0]I )
g—lo o 1lm ™

o 1 o] clar

The identification of a person with clan
sented by the vector

1
ey =01,
0
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and likewise for the two other clans. Matrix A trans-

forms the husband’s clan into the wife’s clan (if ¥ repre-

sents the husband’s clan, then AX represents the wife’s

clan).

a. Are the matrices A and B invertible? Find the in-
verses if they exist. What do your answers mean, in
practical terms?

b. What is the meaning of B2, in terms of the rules of
the community?

¢. What is the meaning of AB and BA, in terms of the
rules of the community? Are AB and B A the same?

d. Bueya is a young woman who has many male first

cousins, both on her mother’s and on her father’s
sides. The kinship between Bueya and each of her
male cousins can be represented by one of the four
diagrams below:

Her mother 9 9 An aunt on the mother’s side

S —
Q3 &9
93 Q3
S
@ 3

In each of the four cases, find the matrix that gives
you the cousin’s clan in terms of Bueya’s clan.

e. According to the rules of the village, could Bueya
marry a first cousin? (We do not know Bueya’s clan.)

106. As background to this exercise, see Exercise 45.

a. If you use Theorem 2.3.4, how many multiplica-
tions of scalars are necessary to multiply two 2 x 2
matrices? .

b. If you use Theorem 2.3.4, how many multiplications
are needed to multiply an »n x p and a p X m matrix?

107.

108.
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In 1969, the German mathematician Volker Strassen
surprised the mathematical community by showing that
two 2 x 2 matrices can be multiplied with only seven
multiplications of numbers. Here is his trick: Suppose

you have to find AB for A = {‘cl Z] and B =

[p q].First compute
r s

hi=@+dp+s)
hy = (c+d)p
h3 = alg —s)
hy = d(r — p)
hs = (a+b)s

he = (c—a)(p+q)
h7 = (b — d)(r + ).

Then
h1+hy—hs+hy hy + hs
hy + ha hi+h3 —ho+hg
Let N be the set of all positive integers, 1, 2, 3, .... We
define two functions f and g from N to N:
fx)y=2x, forallxinN

g()—{ x/2 if x is even

aB=|

(x +1)/2 ifxisodd.

Find formulas for the composite functions g ( f (x)) and
f (g (x)) . Is one of them the identity transformation
from N to N? Are the functions f and g invertible?

Geometrical optics. Consider a thin biconvex lens with
two spherical faces.

This is a good model for the lens of the human eye and
for the lenses used in many optical instruments, such as
reading glasses, cameras, microscopes, and telescopes.
The line through the centers of the spheres defining the
two faces is called the optical axis of the lens,

m Optical axis
Center of sphere Center of sphere
defining the right face defining the left face

In this exercise, we learn how we can track the path of
a ray of light as it passes through the lens, provided that
the following conditions are satisfied:

e The ray lies in a plane with the optical axis.
o The angle the ray makes with the optical axis is small.
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To keep track of the tay, we introduce two reference
planes perpendicular to the optical axis, to the left and
to the right of the lens.

:
'
i
]
[
'
'
)
1
1
i
i
>:

N
I~

Left reference Right reference
plane plane

We can characterize the incoming ray by its slope m and
its intercept x with the left reference plane. Likewise, we
characterize the outgoing ray by slope n and intercept y.

slope m slope n

We want to know how the outgoing ray depends on the
incoming ray; that is, we are interested in the transfor-

mation
T:]R.Z—HRZ; {x] — P]
m n

‘We will see that 7' can be approximated by a linear trans-
formation provided that m is small, as we assumed. To
study this transformation, we divide the path of the ray
into three segments, as shown in the following figure:

We have introduced two auxiliary reference p
rectly to the left and to the right of the lens. (

formation
[ " ] {y }
m n

can now be represented as the composite of -
pler transformations:

HEHEHEH]

From the definition of the slope of a line,
relations v = x + Lm and y = w + Rn.

Slope m d
¥ _

PR R Rt
HEIH

g g

Tt would lead us too far into physics to de
for the transformation

= 7]

here.!3 Under the assumptions we have i
formation is well approximated by

)= S

for some positive constant k (this fornm
w = V).

Eﬁrﬁﬂh;ﬁﬁk

- e
13 gee, for example, Paul Bamberg and Shic
Course in Mathematics for Students of Phy
University Press, 1991.
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fies that

The transformation :J — [ Z } is represented by the

matrix product

o 1= 1]

_[1—Rk L+R—kLR
Tl -k 1—kL

a. Focusing parallel rays. Consider the lens in the hu-
man eye, with the retina as the right reference plane.
In an adult, the distance R is about 0.025 meters
(about 1 inch). The ciliary muscles allow you to vary
the shape of the lens and thus the lens constant %,
within a certain range. What value of k enables you
to focus parallel incoming rays, as shown in the fig-
ure? Thls’ value of & will allow you to see a distant
object clearly. (The customary unit of measurement

for k is 1 diopter = =)

Hint: In terms of tye transformation

RdHt

you want y to be independent of x (y must depend
on the slope m alone). Explain why 1/% is called the
Jocal length of the lens.

Chapter Two Exercises 107

b. What value of k enables you to read this text from a
distance of L = 0.3 meters? Consider the following
figure (which is not to scale).

L NS
¢. Thetelescope. An astronomical telescope consists of
two lenses with the same optical axis.

kl k2

Right reference
plane

Left reference
plane

Find the matrix of the transformation

-G

m n

in terms of k1, k», and D. For given values of k7 and
k», how do you choose D so that parallel incoming
rays are converted into parallel outgoing rays? What

is the relationship between D and the focal lengths
of the two lenses, 1/k; and 1/ko?

Chapter Two Exercises

TRUE OR FALSE?

-6 5
with a scaling.

. 5 6 . .
1. The matrix [ ] represents a rotation combined

2. If A is any invertible » x n matrix, then A commutes
with A~1.

3. The function T [x] = |:x -7 ] is a linear trans-
. y y—x
formation.
L4 May |12 12 ,
. 172 1/2 represents a rotation.

S IfAis any invertible n x n matrix, then rref(Ay = I,.

10.

The formula (42)~! = (A~1)2 holds for all invertible
matrices A.

The formula AB = BA holds for all # X n matrices A
and B.

If AB = I, for two n x n matrices A and B, then A
must be the inverse of B,

If Aisa3 x 4 matrix and B is a4 x 5 matrix, then AB
will be a 5 x 3 matrix.

y

The function T [x} = [
y 1

] is a linear transformation.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

25.

26.

217.

28.

29.

Matrix [I; k——2 6] is invertible for all real numbers k.

There exists a real number k such that the matrix

k-1 -2 . . .
\ 4 k- 3] fails to be invertible.

There exists a real number k such that the matrix
k—2 3
-3 k-2

A= {1 1/ 2] is a regular transition matrix.

fails to be invertible.

0 1/2

The formula det(24) = 2det(4) holds for all 2 x 2
matrices A.

There exists a mairix A such that

1 2 2 5 6| |1 1

3 4 7 8| |1 1}
A .

Matrix [3 6] is invertible.

1 1 1
Matrix |1 0 1
11 0

There exists an upper triangular 2 X 2 matrix A such

11
2 _
that A -—[0 1}

The function T [);] =

is invertible.

G+ -0-D*,

2 5| is a
(x—-32—(x+3)

linear transformation.

There exists an invertible n X n matrix with two identi-

cal rows.

1f A2 = I, then matrix A must be invertible.
1 2

. . 11
There exists a matrix A suchthat A { 1 1} = [ 1 2l

. There exists a matrix A such that E i] A= {1 1].

11

1 1 .
The matnx [ 1 1} represents a reflection about 2
line.
For every regular {ransition matrix A there exists a tran-

sition matrix B such that AB = B.
b d —b is always a
dj\—c a Y

There exists a nonzero upper triangular 2 x 2 matrix A

52 _|© 0
such that A —[O 0].

The matrix product [i

scalar multiple of /2.

There exists a positive integer 1 such that

o -11"
[1 0] =D
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40.

41.

42.

43.

44.

45.

46.

47.

48.

50.

There exists an invertible 2 x 2 matrix A 8

11
_1__
4 ‘[1 1]'

There exists a regular transition matrix A of s
such that A% = A.

If A is any transition matrix and B is any posi
sition matrix, then AB must be a positive trant
trix.

a b ¢
If matix |d e f| 18 invertible, the
g h i

B ﬂ must be invertible as well.

If A2 is invertible, then matrix A itself must
ible.

If A7 = I, then matrix A must be Iy.
1f A2 = I, then matrix A must be either I

If matrix A is invertible, then matrix 5A mus
ible as well.

1f A and B are two 4 X 3 matrices such tha
for all vectors ¥ in R3, then matrices A anc
equal.

1f matrices A and B commute, then the forr
B A2 must hold.

If A2 = A for an invertible n X 7 matrix A,
be I,.

If A is any transition matrix such that Al
then A'01 must be positive as well.

1f a transition matrix A is invertible, then
a transition matrix as well.

If matrices A and B are both invertible
A + B must be invertible as well.

The equation A2 = A holds for all 2 x
representing a projection.

The equation A~ = A holds for all 2 %
representing a reflection.

The formula (A7) - (AW) = - holds fc
9 % 2 matrices A and for all vectors v an

There exist a 2 X 3 matrix A and a3 X 2
that AB = .

There exista 3 x 2 matrix A anda2 x 3
that AB = I5.

 JfA2+3A+4l3 =0fora3 % 3 matrix

be invertible.

If A is an n X n matrix such that A% =
I, + A must be invertible.
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51.

52.

53.

54.

55.

56.

If matrix A commutes with B, and B commutes with C,
then matrix A must commute with C.

If 7 is any linear transformation from R3 to R3,
then T(V x #) = T(¥) x T (&) for all vectors 7 and
 in R3.

There exists an invertible 10 x 10 matrix that has 92

ones among its entries.

The formula rref(AB) = rref(A) rref(B) holds for all
n X p matrices A and for all p x m matrices B.

There exists an invertible matrix S such that

§1 [8 (1)J S is a diagonal matrix.

If the linear system A%% =bis consistent, then the sys-
tem AX = b must be consistent as well.

57.

58.

59.

60.

61.

62,
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There exists an invertible 2 x 2 matrix A such that
A"l =—A,

There exists an invertible 2 x 2 matrix A such that
1 0
2 _
A2 [0 _1]-
. a b
If a matrix A = d represents the orthog-

onal projection onto a line L, then the equation
a® +b? + ¢? + d? = 1 must hold.

If A is an invertible 2 x 2 matrix and B is any 2 x 2 ma-
trix, then the formula rref(A B) = rref(B) must hold.

There is a transition matrix A such that lim A™ fails
m—00
to exist.

For every transition matrix A there exists a nonzero vec-
tor X such that AX = X.




