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51T®=[04]£

53.

54.

55.

z= cos(sin(x)) y

Sketch the image of the unit circle under the linear

transformation
—-. 5 0 -
T(x) = [ 0 2] x.

Let T be an invertible linear transformation from R? to
R2. Show that the image of the unit circle is an ellipse
centered at the origin.3 Hint: Consider two perpendicu-
lar unit vectors v1 and ¥, such that T (1) and T (#,) are
perpendicular. See Exercise 47. The unit circle consists
of all vectors of the form

¥ = cos(t)d; + sin(t)s,
where ¢ is a parameter.

Let #; and @, be two nonparallel vectors in R?. Con-
sider the curve C in R? that consists of all vectors of
the form cos(z)#; + sin(t)u., where ¢ is a parameter.
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Show that C is an ellipse. Hint: You can interpret C as
the image of the unit circle under a suitable linear trans-
formation; then use Exercise 54.

56. Consider an invertible linear transformation 7 from R?

to R2. Let C be an ellipse in R2. Show that the image
of C under 7 is an ellipse as well. Hint: Use the result
of Exercise 55.

Matrix Products

z Recall the composition of two functions: The composite of the functions y =
z=cos(y) Sin(x) and z = cos(y) is z = cos(sin(x)), as illustrated in Figure 1.
Similarly, we can compose two linear transformations.

To understand this concept, let’s return to the coding example discussed in Sec-

/ tion 2.1. Recall that the position X = [xl] of your boat is encoded and that you
y =sin(x) X2

x radio the encoded position y =

Figure |

N

y } to Marseille. The coding transformation is
2

7= A%, with A=F 1.

35

In Section 2.1, we left out one detail: Your position is radioed on to Paris, as you
would expect in a centrally governed country such as France. Before broadcasting
to Paris, the position y is again encoded, using the linear transformation

8 An ellipse in IR? centered at the origin may be defined as a curve that can be parametrized as

cos(t)idy + sin(z) i,

for two perpendicular vectors i, and . Suppose the length of #), exceeds the length of @,. Then we
call the vectors 4, the semimajor axes of the ellipse and =+, the semiminor axes.

Convention: All ellipses considered in this text are centered at the origin unless stated otherwise.
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5 - . 6 7
Z = By, with B—[S 9]

this time, and the sailor in Marseille radios the encoded position Z to
Figure 2.

Paris: 7

A & _ po 167
wwhereB— |:8 9]

Marseille: ¥

Awhere A= B g]

Boat: ¥

Figure 2

: We can think of the message Z received in Paris as a function of
| ; ; position X of the boat,

| Z = B(AX),

! the composite of the two transformations $ = AX and Z = BY. Is this 1
tion 7 = T (¥) linear, and, if so, what is its matrix? We will show two ap
these important questions: (a) using brute force, and (b) using some the:

! a. We write the components of the two transformations and substit
; z71=6y1+ Ty and y1= x1+2x

i‘:f 22 =8y1 + 9 yp = 3x1 + 5x2
so that
71 = 6(x1 + 2x2) + 7(3x1 + 5x2) = 6-1+7-3)x1+(6-2
= 27x1 + 47x2,
79 = 8(x1 + 2x2) + 9(3x1 +5x2) = 8-1+9-3x1+(8-2
= 35x; + 61x2.

B This shows that the composite is indeed linear, with matrix
6-1+7-3 6-2+7-5) _ |27 47
8.1+9.3 8-2+9-5| |35 61]°

‘ b. We can use Theorem 1.3.10 to show that the transformation 7'(
! is linear:
I TG + @) = B(AG + ) = B(AD + Aib)
i

= B(AD) + B(Ad) =T (@) + T (W),
T (k%) = B(AKD)) = B(k(AD)) = k(B(AD)) =k
Once we know that T is linear, we can find its matrix by cc
vectors T(¢1) = B(Aé;) and T(¢,) = B(A#,); the matrix
[T@) T()],by Theorem2.1.2:
" - 6 7|1
T (¢1) = B(Aéy) = B(first column of A) = RE =

T (2,) = B(A#;) = B(second column of A) = {g ;] m
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We find that the matrix of the linear transformation 7 (¥) = B(AX) is
| |
- - 27 47
T(Iel) T(lez) = [35 61} ,

This result agrees with the result in (a), of course.

The matrix of the linear transformation T (X) = B(AX) is called the product of
the matrices B and A, written as BA. This means that

T(X) = B(AX) = (BA)X,

for all vectors ¥ in R?. See Figure 3.

Now let’s look at the product of larger matrices. Let B be an n X p matrix and
A a p x m matrix. These matrices represent linear transformations, as shown in
Figure 4.

Paris: 7 Zin R
A 7 =By, where B= 67 =By
’ 8 9
Z = B(AX) = (BA)%,
Marseille: 7 yin RP
_ |27 47
where BA = |:35 61]
y=AX where A= [1 2] y=A¥
35
Boat: ¥ ¥inR™
Figure 3 Figure 4

Again, the composite transformation 7 = B(AX) is linear. [Part (b) of the fore-
going justification applies in this more general case as well.] The matrix of the linear
transformation 7 = B(AX) is called the product of the matrices B and A, written as
BA. Note that BA is an n X m matrix (as it represents a linear transformation from
R™ to R"). As in the case of R2, the equation

7 = B(AX) = (BA)¥
holds for all vectors X in R™, by definition of the product BA. See Figure 5.

ZinR" 2o
t 7=By Z=By
in R
7 = B(AZ) = (BA)Z 5in R %inm}l’#q
7= A% J=AZ¥
¥ in R™ X inR™
Figure 5 Figure 6

In the definition of the matrix product B A, the number of columns of B matches
the number of rows of A. What happens if these two numbers are different? Suppose
Bisann x p matrix and A is a g x m matrix, with p % g.

In this case, the transformations 7 = By and y = AX cannot be composed,
since the target space of y = AX is different from the domain of 7 = BY. See
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Figure 6. To put it more plainly: The output of $ = AX is not an accept:
for the transformation Z = BY. In this case, the matrix product BA is unc

Definition 2.3.1  Matrix multiplication

a. Let B be an n x p matrix and A a q x m matrix. The produ
defined if (and only if) p = q.

b. If Bisann x p matrixand Aa p X m matrix, then the produ
defined as the matrix of the linear transformation T(X) = B(4
means that T(¥) = B(AX) = (BA)Z, for all X in the vector s
The product BA isann X m matrix.

Although this definition of matrix multiplication does not give v
instructions for computing the product of two numerically given mat
: instructions can be derived easily from the definition.
: As in Definition 2.3.1, let B be an n x p matrix and Aapxmm
think about the columns of the matrix BA:

| i (ith column of BA) = (BA)%;
i = B(A%)
ﬂ. = B(ith column of A).
) If we denote the columns of A by 1, U2, ... » Um, We CaD Write
:“ b | | l |
; BA=B |11 V2 - U | = BY; Buy - B

i' Lo | L |

Theorem 2.3.2 The columns of the matrix product

Let Bbeann x p matrixand Aap xm matrix with columns 91, 1
Then, the product BA is

i | | L |
It BA=B 1-51 1_52 ﬁm = 31—51 Bl_)'z Bﬁm
[ | l | I

To find BA, we can multiply B by the columns of A and ¢
i resulting vectors.

i This is exactly how we computed the product

I
4ot 6 7|1 2 27 47
BA = [8 9] [3 5]" {35 61}
on page 76, using approach (b).
For practice, let us multiply the same matrices in the reverse O

1 216 22 o [ro2v 47
column of AB 18 [3 5] [8] - {58] . the second is [3 5] [9] =
1 2Y[6 7] _[22 25
AB = {3 5} {8 9] = [58 66] '
Compare the two previous displays to see that AB # BA: Mat
tion is noncommutative. This should come as no surprise, in view
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put the matrix product represents a composite of transformations. Even for functions of
one variable, the order in which we compose matters. Refer to the first example in
this section and note that the functions cos (sin(x)) and sin (cos(x)) are different.

Theorem 2.3.3 Matrix multiplication is noncommutative

AB # BA, in general. However, at times it does happen that AB = BA; then
is we say that the matrices A and B commute.

| It is useful to have a formula for the ijth entry of the product BA of ann x p
| matrix B and a p x m matrix A.

| Let ¥y, V2, . .. , Um be the columns of A. Then, by Theorem 2.3.2,
|
e | | | L | |
suc | BA=B|¥, ¥ - ¥; -+ Un|=|BV1 Bv, --- BU; --- By
et's | | l | . | |
l The ijth entry of the product BA is the ith component of the vector B%;, which is
. the dot product of the ith row of B and ¥;, by Definition 1.3.7.
|
‘ Theorem 2.3.4 The entries of the matrix product
; Let B be ann x p matrix and A a p x m matrix. The {jth entry of BA is the dot
‘ product of the ith row of B with the jth column of A.
‘ (b1 b1z -+ bip |
! by b v by [ay apn - @y - aim
i BA : : : ay Gy v iy ot G
— | & T b bz - by
s :| C : ap1 Apz c** dpj ccc Gpm
" i _bnl bn2 e bnp_
is the n X m matrix whose ijth entry is
?
bijayj +bpaxj +--- +bipay; = Zbikakj-
k=1
z the
S 6 7{11 2 6-1+7-3 6-247-5 27 47
EXAMPLE | [8 9] [3 5]_[8-14—9-3 8~2+9-5]_[35 61]
We have done these computations before. (Where?) |
EXAMPLE 2 Compute the products BA and AB for A = [(l) (1)] and B = [_(1) ﬂ . Interpret
he first your answers geometrically, as composites of linear transformation. Draw compo-
sition diagrams.
Thus, )
Solution
-1 0|0 1 0 -1 0 1(|-1 of ¢ 0 1
s BA_[01H1 0]‘{1 o} and AB‘[l 0“01]_[—1 0]‘
Jtiplica-

fact that Note that in this special example it tumns out that BA = —AB.
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From Section 2.2 we recall the following geometrical interpretations:

A= (1) (1)] represents the reflection about the vector [ﬂ "
-1 0 . 0
B = 0 1 represents the reflection about il
0 -1 . T
BA = 1 0 represents the rotation through 5; and
0 1 . T
AB=| 10 represents the rotation through — 3

Let’s use our standard L to show the effect of these transformations. See

L=
l

— 1

Figure 7

AB

Figure 8

Matrix Algebra

Next let’s discuss some algebraic rules for matrix multiplication.

» Composing a linear transformation with the identity transformati
side, leaves the transformation unchanged. See Example 2.14.

Theorsm 2.3.5 | Multiplying with the identity matrix

For an n X m matrix A,
Al, = L,LA=A.




B

either

Theorem 2.3.6

A(BO)

AN

R — RI——> RP — "

G
(AM

Figure 9

Theorem 2.3.7

Theorem 2.3.8
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o If Aisann X p matrix, B a p X g matrix, and C a ¢ x m matrix, what is the
relationship between (AB)C and A(BC)?
One way to think about this problem (although perhaps not the most

elegant one) is to write C in terms of its columns: C = [1‘51 Dy - vm].
Then

(ABYC=(AB)[Uy U2 -+ Um]|=[(AB)U; (AB)o» --- (AB)¥u|,
and

A(BC)=A[BV; BV, --- Bin|=|[A(BY)) A(BU) --- A(Bin)].

Since (AB)U; = A(BU;), by definition of the matrix product, we find that
(AB)C = A(BC).

Matrix multiplication is associative

(AB)C = A(BC)
We can simply write ABC for the product (AB)C = A(BC).

A more conceptual proof is based on the fact that the composition of functions
is associative. The two linear transformations

T(¥) = ((AB)C)Z and L(%)= (A(BO))X
are identical because, by the definition of matrix multiplication,

T (%) = ((AB)C)X = (AB)(C¥) = A(B(C%))
and

L(X) = (A(BC))X = A((BC)X) = A(B(CX)).

The domains and target spaces of the linear transformations defined by the matrices
A,B,C,BC, AB, A(BC), and (AB)C are shown in Figure 9.

Distributive property for matrices
If A and B are n x p matrices, and C and D are p x m matrices, then

A(C + D) = AC + AD, and
(A + B)C = AC + BC.

You will be asked to verify this property in Exercise 27.

If Aisanrn x p matrix, B is a p X m matrix, and k is a scalar, then
(kA)B = A(kB) = k(AB).

You will be asked to verify this property in Exercise 28.

Block Matrices (Optional)

In the popular puzzle Sudoku, one considers a 9 x 9 matrix A that is subdivided into
nine 3 x 3 matrices called blocks. The puzzle setter provides some of the 81 entries
of matrix A, and the objective is to fill in the remaining entries so that each row of
A, each colunin of A, and each block contains each of the digits 1 through 9 exactly
once.
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Theorem 2.3.9

B

ST T ]
195 B
98 6
8 6 3
gl |3 1]
7 2 6|
6 218
4019 5
719

This Sudoku puzzle is an example of a block matrix (or partitioned matri
a matrix that is partitioned into rectangular submatrices, called blocks, by
horizontal and vertical lines that go all the way through the matrix.

The blocks need not be of equal size.

For example, we can partition the matrix

1 2 3 1 2|3
B=|4 5 6 as B= |4 5Jr6 ={§“ ?2}
6 7 9 6 719 2l s
1 2 3
where B = |, 5| B2=|g By =1[6 7], and Bxn =Dl

A useful property of block matrices is the following:

Multiplying block matrices

Block matrices can be multiplied as though the blocks were scalars (i
the formula in Theorem 2.3.4):

(A1 A Agp
An Axn - Azp| [By B - ;Blj
AB= | : : | |Ba Bm - B
‘An A - Ap : : :
: : | LBp Bp2 o Bai
|Am Am App |

is the block matrix whose ijth block is the matrix

P
AnBij+ AnByj+- -+ ApBpj = Z A Byj>
k=1

provided that all the products A;x By are defined.

Verifying this fact is left as an exercise. A numerical example folls

0
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;of

ing

EXAMPLE 4

2.3 Matrix Products 83

Compute this product without using a partition, and see whether you find the
same result. i

In this simple example, using blocks is somewhat pointless. Example 3 merely
illustrates Theorem 2.3.9. In Example 2.4.7, we will see a more sensible usage of
the concept of block matrices.

Powers of Transition Matrices

We will conclude this section with an example on transition matrices. See Defini-
tion 2.1.4.

Let’s revisit the mini-Web we considered in Example 9 of Section 2.1:

~

1 =2 2
I v 1
3 - 4
with the transition matrix
1
0 5 00
1
Az |2 0 0 1
1 1
3 5 00
0 01 0

At a predetermined time, all the surfers will follow one of the available links, in the
manner described in Example 2.1.9. If the initial distribution of the surfers among
the four pages is given by the vector X, then the distribution after this transition will
be AX. Now, let’s iterate this process: Imagine an event of “speed surfing,” where,
every few minutes, at the blow of a whistle, each surfer will follow an available link.
After two transitions, the distribution will be A(A¥) = A2%X, and after m transitions
the distribution will be given by the vector A™X. Let’s use technology to compute
some of the powers A™ of matrix A:

100 3 0.173 0.172 0.172 0.150
oo | ;10 410 5 | 03440345 0301 0344
L1 g 17 0.247 0.247 0270 0.236 |’
110 0 0.236 0.236 0.258 0.270
0.16697 0.16697 0.16650 0.16623
420 5, | 033347 0.33347 0.33246 0.33393

0.25008 0.25008 0.25035 0.24948
0.24948 0.24948 0.25068 0.25035

These powers A™ will be transition matrices as well; sée Exercise 68.

In Exercises 69 through 72, you will have a chance to explore the significance
of the entries of these matrices A™, in terms of our mini-Web and its graph.

As we take a closer look at the matrix A%°, our attention may be drawn to the
fact that the four column vectors are all close to the vector

1/6
1/3

. 1/4|°
1/4
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tribution X4, for the matrix A, as ¢

which happens to be the equilibrium dis
that the limit of the column vecto

in Example 2.1.9. We might conjecture
i8 Xequ s m goes 1o infinity.

Before we address this issue, let’s introduce some terminology.

Definition 2.3.10  Regular transition matrices
A transition matrix is said to be positive if all its entries are positive (1
that all the entries are greater than 0).
A transition matrix is said to be regular (or eventually positive) if th
A™ is positive for some positive integer #1.

For example, the transition matrix {gg g;] is positive (and ther

regular; let m = 1 in Definition 2.3.10). The transition matrix A = {1
_ . .. . 172 1/4
2 _
to be positive, but it 18 regular since A* = | | n 3/ 4] .

The matrix A in Example 4 fails to be positive, but it is regular si

positive. The reflection matrix A = ? 0 fails to be regular since A™

for even m and A™ = A= {? é for odd m.

Now we can address the conjecture we made at the end of Example

rEqui]ibria for regular transition matrices

Let A be a regular transition matrix of size n X n.

tribution vector X in R" such thaf
distribution for A, denoted Xe

Theorem 2.3.11

a. There exists exactly one dis
This is called the equilibrium
components of Xequ are positive.

b. If % is any distribution vector in R”, then lim (A™X) = Xequ-

m—>00

|

C. 1im Am = }equ e zequ

, which is the matrix whose colu

Yequd
Part (b) states that i

distribution ¥equ, regard
@bally stable equilibrium distribution.

n the long run the system will approach the ¢
less of the initial distribution; we say that

We will outline a proof of parts (2) and (b) in Chapter 7.1
(c) are easily seen to be equivalent. If we assume that part (b
lim (jth column of A™) = lim (A™&;) = Xequ SINCE ¢; is a distribw

m—>00

ﬁ;eofcise 73, you are asked to derive part (b) from part (C).

9This limit is defined entry by entry. We claim that any entry of A™ converges to the -
| I

entry of the matrix | Zegu *** Foqu | as m goes to infinity.

I I
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EXERCISES 2.3

GOAL Compute matrix products column by column
and entry by entry. Interpret matrix multiplication in
terms of the underlying linear transformations. Use the
rules of matrix algebra. Multiply block matrices.

If possible, compute the matrix products in Exercises 1
through 13, using paper and pencil.

111“12] 251[32}
0 1|13 4 _2110
312312 4f1—175
4 5 6|3 4 -2 2|3 1
(1 0 .

a b 0 1]]0 1
5.01[} 6 H]
—Oocd 0 0[|0 O
Ml o0 -1771 2 3
7.10 1 1{[3 2 1
1 -1 -2] (2 1 3
(a b [ d —-b 1 2]1[-6 8
N S S AT
Bl 3
10. {2{[1 2 3] 1. [1 2 3]|2
13 1

12
12 [1 0 —1] [2 1]
11

a b c 0
13. [0 0 1] Ed e f} {1}
g h k][O

14. For the matrices

A=11,B=123,
HH 12 3

11
1 0 -1 1
C=|2 1 o0f, D={|1|, E=][5],
32 1 1

determine which of the 25 matrix products AA, AB,
AC, ..., ED, EE are defined, and compute those that
are defined. '

l{se the given partitions to compute the products in Exer-
cises 15 and 16. Check your work by computing the same
Products without using a partition. Show all your work.

1ololl1]o0
15. [0 10 210 ,

134|334

16.
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1 0[10 1 212 3
0 10 1 3 4|4 5
0 0|1 0 00\12
0 0[0 1 0 03 4

In the Exercises 17 through 26, find all matrices that com-
mute with the given matrix A.

17.
19.

21.

23.

25.

27

28.

29.

30.

1 0 2 3
[t wmas[2]
0 -2 1 2
A= 12 O} @A— K 1]
[1 2 1 1
A= 2 _J 22, A= 1 ]
13 2 00
A= ) 6 24. A=|(0 2 0
- |0 0 3]
(2 0 0 (2 0 0]
A=10 3 0 26. A=1(0 3 0
0 0 2 10 0 4]
Prove the distributive laws for matrices:

A(C + D)= AC+ AD
and
(A+ B)C = AC + BC.

Consider an n X p matrix A, a p X m matrix B, and a
scalar k. Show that

(kA)B = A(kB) = k(AB).
Consider the matrix

cosa —sino
~ |sina  cosal’

‘We know that the linear transformation 7' (¥) = DX is

a counterclockwise rotation through an angle «.

a. For two angles, @ and B, consider the products
Dy Dg and DgDy. Arguing geometrically, describe
the linear transformations y = DyDgX and y =
Dg D, %. Are the two transformations the same?

b. Now compute the products Dy Dg and DgD,. Do
the results make sense in terms of your answer in
part (a)? Recall the trigonometric identities

sin(e & B) = sinacos 8 +cosa sin B
cos(o = B) = cosw cos B F sin e sin S.

Consider the lines P and Q in R? in the accompany-
ing figure. Consider the linear transformation 7' (X) =
refg (refp(X)); that is, we first reflect ¥ about P and
then we reflect the result about Q.
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-7

a. For the vector ¥ given in the figure, sketch T(X).
What angle do the vectors % and T(%) enclose?
What is the relationship between the lengths of ¥
and T (¥)?

b. Use your answer in part (a) to describe the trans-
formation T geometrically, as a reflection, rotation,
shear, or projection.

¢. Find the matrix of T'.

d. Give a geometrical interpretation of the linear trans-
formation L(¥) = tefp(refg (¥)), and find the
matrix of L.

31. Consider two matrices A and B whose product AB
is defined. Describe the ith row of the product AB in
terms of the rows of A and the matrix B.

32. Find all 2 x 2 matrices X such that AX = XA for all
2 x 2 matrices A.

For the matrices A in Exercises 33 through 42, compute
A2 = AA, A3 = AAA, and A%, Describe the pattern that
emerges, and use this pattern to find AL Interpret your
answers geometrically, in terms of rotations, reflections,

shears, and orthogonal projections.
0 1
.0
~/3

=[5 ) &l
36. [(1) _ﬂ 3. Li ﬂ 38. %L_/% v
39, %[_1 ﬂ 40. B '(1)}

101 1 11 1
41. :/—5 L _1} 42, > [1 l]
In Exercises 43 through 48, find a 2 x 2 matrix A with

the given properties. Hint: It helps to think of geometrical
examples.

3. AL, A’=1
45. A2#£L,A°=D

46. A2 = A, all entriés of A are nonzero.

44. A2+, A*=D

47. A3 = A, all entries of A are nonzero.

48. A0 = {1 1]

In Exercises 49 through 54, consider the matrice.
) o[ el
Ml IS ]
o101 w=las o8 oo

Compute the indicated products. Interpret th
ucts geometrically, and draw composition diagr

Example 2.

49, AF and FA CG and GC
51. FJand JF 52. JHand HJ
§3. CDand DC 54, BE and EB.

In Exercises 55 through 64, find all matrices X 1
the given matrix equation.

ss. (3 Hx=[o o)

12 1 2
s«s.x{3 5}:12 57 {3 S}X_

2 1 0 0 2 1
ss.x{4 2}:{0 0} 59.X[4 2]_

1 2 123
60. {2 4})(_12 61. [0 X 2]

10 1 4
62. |2 1| x=1I 63. |2 5|X

3 2 3 6

2 3

1
04. [4 5 6:\X=12

65. Find all upper triangular 2 X 2 matrices X
is the zero matrix.

4&6/6\, Find all lower triangular 3 x 3 matrices X
_/ is the zero matrix.

67. a. If A is any 3 x 3 transition matrix
tion 2.1.4), find the matrix product [1
b. For a fixed n, let & be the row
nt 1], Show thatann X n
n1’s . .
nonnegative entries 18 a transition me
only if) éA = &.

68. Show thatif A and B aren X7 transition
AB will be a transition matrix as well. B
cise 67b.

69. Consider the matrix AZ in Example 4 of
a. The third component of the first colur
What does this entry mean in practice

in terms of surfers following links in
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2 is 1/4.
, that is,
1i-Web?

70.

71.

72.

73.

74.

75.

76.

b. When is the ijth entry of A2 equal to 0? Give your
answer both in terms of paths of length 2 in the
graph of the mini-Web and also in terms of surfers
being able to get from page j to page i by following
two consecutive links.

a. Compute A3 for the matrix A in Example 2.3.4.

b. The fourth component of the first column of A3 s
1/4. What does this entry mean in practical terms,
that is, in terms of surfers following links in our
mini-Web?

¢. When is the ijth entry of A? equal to 0? Give your
answer both in terms of paths in the graph of the
mini-Web and also in terms of surfers being able to
get from page j to page i by following consecutive
links.

d. How many paths of length 3 are there in the
graph of the mini-Web from page 1 to page 27
How many surfers are taking each of these paths,
expressed as a proportion of the initial population of
page 1?7

For the mini-Web in Example 2.3.4, find pages i and j
such that it is impossible to get from page j to page i
by following exactly four consecutive links. What does
the answer tell you about the entries of A*?

For the mini-Web in Example 2.3.4, find the smallest
positive integer m such that all the entries of A™ are
positive; you may use technology. What does your an-
swer tell you in terms of paths in the graph of the mini-
Web and also in terms of surfers following consecutive
links?

Use part (c) of Theorem 2.3.11 to prove part (b): If A is
aregular transition matrix of size n x n with equilibrium
distribution )’Eequ, and if X is any distribution vector in
R”, then lim (A™X) = Xequ-

m—00 .

Suppose A is a transition matrix and B is a positive tran-
sition matrix (see Definition 2.3.10), where A and B are
of the same size. Is A B necessarily a positive transition
matrix? What about BA?

Prove the following: If A is a transition matrix and A™
is positive, then A™*+! is positive as well.

For the mini-Web graphed below, find the equilibrium
distribution in the following way: Write the transition
matrix A, test high powers of A to come up with a con-
jecture for the equilibrium distribution %4y, and then
verify that A¥eqy = Xegu. (This method, based on The-
orem 2.3.11, is referred to as the power method for
finding the equilibrium distribution.of a regular transi-
tion matrix.) Also, find the page with the highest naive
PageRank. You may use technology.

77.

78.

79.

80.

81.

82.
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Consider the transition matrix

04 02 0.7
A=1|0 06 0.1
06 02 02

Verify that A is a regular transition matrix and then use
the power method (see Exercise 76) to find the equilib-
rium distribution. You may use technology.

Let’s revisit the mini-Web with the graph
1 2 2
A
3 - 4,
but here we consider the surfing model with a “jump-
ing rate” of 20%, as discussed in Exercise 2.1.53. The
corresponding transition matrix is
0.05 045 005 0.05
045 0.05 005 0.85
045 045 0.05 0.05
0.05 0.05 0.85 0.05

This transition matrix is positive and therefore regular,
so that Theorem 2.3.11 applies. Use the power method
(see Exercise 76) to find the equilibrium distribution.
You may use technology. Write the components of Z.qy
as rational numbers.

Give an example of a transition matrix A such that there
exists more than one distribution vector ¥ with A¥ = .

Give an example of a transition matrix A such that
lim A™ fails to exist.

m—>00

If AD = 5%, express A2D, A3D, and A™9 as scalar mul-

tiples of the vector v.

In this exercise we will verify part (b) of Theo-
rem 2.3.11 in the special case when A is the transi-
tion matrix [0'4 0.3

06 0.7

(1) . [We will not be using parts (a) and (c) of Theo-

] and ¥ is the distribution vector

rem 2.3.11.] The general proof of Theorem 2.3.11 runs
along similar lines, as we will see in Chapter 7.

a. Compute A [é] and A [_11].WriteA {_11] asa

scalar multiple of the vector _11

1 .
ol 22 linear
combination of the vectors B] and {_11 ] .

c. Use your answers in parts (a) and (b) to write AX as

b. Write the distribution vector X =

-1
More generally, write A™X as a linear combination

a linear combination of the vectors B] and [ 1 ] .
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positive. (Here you are proving the last claim

of the vectors ;] and [_}1] , for any positive rem 2.3.112.)
integer m. See Exercise 81. ) .
d. Tn your equation in part (©), let m go to infinity 84. anmderann X mmatnxA of rank n. Show
io find lim (A™X). Verify that your answet is the exists an m X 7 MAIX X such that AX = Iy.
— how many such matrices X are there?

equilibr’ilumocc’iisuibution for A.
85. Considerann xXn matrix A of rank n. How m

83. If A% = ¥ for a regular transition matrix A and a distri- om0 | that AX = 1n?
bution vector %, show that all components of % must be matrices X are there such that A% = fn’

Whe Inverse of a Linear Transformation

Let’s first review the concept of an invertible function. As you read thes
definitions, consider the examples in Figures 1 and 2, where X and Y are

T R S
@
quation R(x) = Yo has two solutions, x1 and

Figure | Tis invertible. R is not invertible: Thee
invertible: There is no x such that S{(x) = Yo.

T T-1
X Y X Y
—8 =
1 1

Figure 2 A function T and its inverse T-L

Definition 2.4.1 Invertible Functions
A function T from X to ¥ is called invertible if the equation 7' (x)

unique solution x in X foreachyin¥.
In this case, the inverse -1 from Y to X is defined by

T~1(y) = (the unique x in X such that T(x) = y)-

To put it differently, the equation
x =T means that y = Tx).

Note that
T~ (T(x)) =x  and T(T') =v

for all x in X and for all y in Y.
Conversely, if L is a function from Y to X such that

L(Tx)=x  and T(L») =Y

for all xin X and forall yinY, then T is invertible and T 1=L.
If a function T is invertible, then so is T-land (T H 1 =T.



