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CHAPTER 2 Linear Transformations

representing the fact that C$1 is worth ZARS (as of

September 2012).

a. After a trip you have C$100 and ZAR1,600 in your
pocket. We represent these two values in the vec-

100

1,600
cal significance of the two components of the vector
AX?

b. Verify that matrix A fails to be invertible. For which
vectors b is the system A¥ = b consistent? What

tor X = [ ] Compute AX. What is the practi-

62.

63.

Consider an arbitrary cutrency exchange mat
Exercises 60 and 61.

a. What are the diagonal entries a;; of A?

b. What is the relationship between a;; and ¢

¢. What is the relationship among @k, dg;» a

d. What is the rank of A7 What is the re
between A and rref(A)?

Solving a linear system AX = 0 by Gaussia
tion amounts to writing the vector of leading
as a linear transformation of the vector of free

is the practical significance of your answer? If the Consider the linear system
' system AX = b is consistent, how many solutions X
are there? Again, what is the practical significance X1 — X2 +4x5 =0
of the answer? x3 — x5=0
x4 —2x5 =0.

61.

Consider a larger currency exchange matrix (see Exer-
cise 60), involving four of the world’s leading curren-
cies: Buro (€), U.S. dollar ($), Chinese yuan (¥), and
British pound (£).

$

X1
Find the matrix B such that | x3 | = B [x2

€ ¥ £ 64. Consider the linear system-
| , x 08 % =x=7€
A= * % * x|§ x1 + 2%+ x3+ Txa=0
\ 1, - * * x 10| ¥ x1+2x2+2x3+11x4=0
| - 08 % *x *]£

The entry a;; gives the value of one unit of the jth
currency, expressed in terms of the ith currency. For
example, azs = 10 means that £1 = ¥10 (as of
August 2012). Find the exact values of the 13 missing
entries of A (expressed as fractions}.

x1 + 2% + 3x3 + 15x4 =0
x1 + 2xp + 4x3 + 19x4 = 0.

Find the matrix B such that [2] = B

Exercise 63.

miinear Transformations in Geometry

In Example 2.1.5 we saw that the matrix [(1)

0 represents a counte:

rotation through 90° in the coordinate plane. Many other 2 x 2 matr
simple geometrical transformations as well; this section is dedicated to a
of some of those transformations.

o EXAMPLE |  Consider the matrices
2 0 1o [-t o0
';ia‘- A_[O 2}’ B‘[o 0]’ C—[o 1]’
I 0 1 1 02 1 -1

! D_[—l 0]’ E‘[o 1]’ and F‘L 1}
L Show the effect of each of these matrices on our standard letter L,> &
' . each transformation in words.

3See Example 2.1.5. Recall that vector [(1)] is the foot of our standard L, and [(2)] isitst
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i

The L gets enlarged by a factor of 2; we will call this transformation a scal-
ing by 2.

L abl
i g

The L gets smashed into the horizontal axis. We will call this transformation
the orthogonal projection onto the horizontal axis.

The L gets flipped over the vertical axis. We will call this the reflection about
the vertical axis. .
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The L is rotated through 90°, in the clockwise direction (this am«
rotation through —90°). The result is the opposite of what we got

ple 2.1.5.

d g
5]
B )

The foot of the L remains unchanged, while the back is shifted hs
to the right; the L is italicized, becoming L. We will call this tran:

a horizontal shear.

€.

There are two things going on here: The L is rotated through 45° and al
(scaled) by a factor of /2. This is a rotation combined with a scalin,
perform the two transformations in either order). Among all the possible
of the transformations considered in parts (a) through (), this one is
important in applications as well as in pure mathematics. See Theore!

example.

We will now take a closer look at the six types of transformations
tered in Example 1.

Scalings © 0
For any positive constant k, the matrix [ 0 k} defines a scaling by k,

kO_,_kOxl'_kxl_xl_..
{0 k} *e [0 k] [xz] - [kxz} =k [xz} =k
This is a dilation (or enlargement) if &k exceeds 1, and it is a co
shrinking) for values of k between 0 and 1. (What happens when k 1

zero?)
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Orthogonal Projections*

Consider a line L in the plane, running through the origin. Any vector X in R? can
be written uniquely as

.i?:.i:" +j'J-9

where X! is parallel to line L, and X is perpendicular to L. See Figure 1.

#* (translated)

Figure 1 Figure 2

The transformation 7'(¥) = X from R? to R? is called the orthogonal projec-
tion of X onto L, often denoted by proj; (¥):

proj (X) = 2l

You can think of proj, (X) as the shadow that vector X casts on L if you shine a light
straight down on L.

Let L1 be the line through the origin perpendicular to L. Note that ¥ is par-
allel to L, and we can interpret ¥+ as the orthogonal projection of X onto L+, as
illustrated in Figure 2.

We can use the dot product to write a formula for an orthogonal projection.
Before proceeding, you may want to review the section “Dot Product, Length,
Orthogonality” in the Appendix. '

To find a formula for %!, let & be a nonzero vector parallel to L. Since X! is
parallel to ), we can write

= kw,

for some scalar k about to be determined. Now ¥+ = ¥ — X! = X — kib is perpen-
dicular to line L, that is, perpendicular to ), meaning that

(F—kw) -w=0.

It follows that

=y
81

X w—k(@ )=0, or k=

g4
&

‘We can conclude that

=y
g1

gt
&

)i

’ . . - . .
“The term orthogonal is synonymous with perpendicular. For a more general discussion of
projections, see Exercise 33.

. proj, (¥) = ! = kw = (
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See Figure 3. Consider the special case of a unit vector u parallel to L.
formula for projection simplifies to

- =

proj (V) = ("——“) 0= (% Wi
u-u

since 7 - I = [|[#]|? = 1 for a unit vector i.

— U (translated)

Ea11

=
w

” B SR AR
71 = proj. (%) =(—i}-> W

Figure 3

; Is the transformation 7 (¥) = proj (¥) linear? If so, what is its matrix? I

5 - X o U

| x=[1] and u=[l},
. X2 uz

|

i then

!
racn-o5- ()2 2

: 17}
' = (x1uy + X2u2) [ 1}
Uus

; _ [wdx 4 wiuax
Uix1 + u%xz

. ik
3 _ u% IZ8%7%) X1
Ui u% X2

|

; u% Uiz | -

k = 2 X.

= proj, (X) is indeed a linear transformation,

’ It turns out that 7' (¥)

{ ! u2 u u . - .
[u 1 ; 2| More generally, if % is a nonzero vector parallel to
1U2 2

1| . 1 w2 wiw .
i matrix is P = ———3 ) 152 1. See Exercise 12.
- wy +wy [Wiw2 W

EXAMPLE 2  Find the matrix P of the orthogonal projection onto the line L spanned t

. Solution
p_ 1t w?  wwy] _ 19 12] _[036 048
T W twd [ww, wh | 25012 16 ~ 1048 0.64

Let us summarize our findings.
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Orthogonal Projections

Consider a line L in the coordinate plane, running through the origin. Any vector
% in R? can be written uniquely as

=3+ 54
where %! is parallel to line L, and X~ is perpendicular to L.
The transformation T (¥) = %! from R? to R? is called the orthogonal pro-

jection of X onto L, often denoted by proj (¥). I w is a nonzero vector parallel
to L, then
ro (-)) 'f N 17) -
X)= | 0= }w.
projg, D0

In particular, if = [l’:l ] is a unit vector parallel to L, then
2

proj, (%) = (X - #)i.
The transformation 7 (X) = proj, (¥) is linear, with matrix

2 2

P 1 wi  wiwa| | ¥ wup

=53 2 | = 2 |-
w?+w? [ww2 w; Uiy uj

Reflections

Again, consider a line L in the coordinate plane, running through the origin, and let
% be a vector in R?. The reflection refy (X) of X about L is shown in Figure 4: We
are flipping vector X over the line L. The line segment joining the tips of vectors
% and ref, X is perpendicular to line L and bisected by L. In previous math courses
you have surely seen examples of reflections about the horizontal and vertical axes
[when comparing the graphs of y = f(x),y = —f(x),and y = f(-—x), for
example].

We can use the representation X = ¥/ + X to write a formula for ref; (X). See
Figure 4.

%+ (translated)

—%1 (translated)

e

rCfL(J_C.)
Figure 4

We can see that

refr (¥) = #! — #L.

Adding up the equations ¥ = ¥ + ¥+ and ref; (x) = X! — ¥+, we find that ¥ +
refy (%) = 2%, = 2proj, (¥), so

ref () = 2proj; (%) — ¥ = 2P% — ¥ = 2P — D)X,
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Definition 2.2.2

where P is the matrix representing the orthogonal projection onto the I
Definition 2.2.1. Thus, the matrix § of the reflection is

_ [ 2w 2um 1 0] _[2d—-1 2mu
S—ZP—IZ—[Zulug 2u3 1o 1|7 | 2uuy 23—

It turns out that this matrix S is of the form [Z _ba] . where a* + b* =1

the straightforward verification as Exercise 13). Conversely, any matrix o

{Z _ba] . with a? + b? = 1, represents a reflection about 2 line. See Exes
b

. a
We are not surprised to see that the column vectors [ b and —a

flection matrix are unit vectors, with a® + bt = b+ (—Tz = 1.1

. a
column vectors are the reflections of the standard vectors, bl = re

= refz,(¢2), by Theorem 2.1.2. Since the standard vectors 21 and

vectors and a reflection preserves length, these column vectors will be v
as well. Also, it makes sense that the column vectors are perpendicula

product [Z . _ba = ab + b(—a) = 0, since the reflection preserve

angle between ¢; and é;. See Figure 5.

4 -
P
/
I
I -
\L . & X
lll %
/ ! L
b f e ) a -
_l=re (€2 [b] =ref, (¢1)
Figure 5

Reflections

Consider a line L in the coordinate plane, running through the orif
7 = 2l + %L be a vector in R?. The linear transformation T'(¥) =

called the reflection of ¥ about L, often denoted by ref (%)
ref; () = X1 — .
We have a formula relating refy, (¥) to proj L)

refy, (%) = 2proj (¥) — X = 2% - Wi — X.

The matrix of T is of the form [Z _Z] , where a*> +b* = 1. Con

matrix of this form represents a reflection about a line.

4
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Use Figure 6 to explain the formula ref; (¥) = 2proj; (¥) — ¥ geometrically.

proj.(¥)

ref]_()_c')

Figure 6

Orthogonal Projections and Reflections in Space

Although this section is mostly concerned with linear transformations from R? to
R2, we will take a quick look at orthogonal projections and reflections in space,
since this theory is analogous to the case of two dimensions.

Let L be a line in coordinate space, running through the origin. Any vector X
in R? can be written uniquely as ¥ = X 4 ¥+, where ¥/ is parallel to L, and ¥ is
perpendicular to L. We define

proj; (X) = 3,
and we have the formula
proj, (¥) = X! = (& - Wi,

where # is a unit vector parallel to L. See Definition 2.2.1.

Let LY = V be the plane through the origin perpendicular to L; note that the
vector ¥+ will be parallel to L+ = V. We can give formulas for the orthogonal
projection onto V, as well as for the reflections about V and L, in terms of the
orthogonal projection onto L:

projy (¥) = X — proj, (¥) = ¥ — (X - ),
refz (X) = proj; (¥) — projy (¥) = 2proj, (X) — X =2(X - i)u — x, and
refy (X) = projy (¥) — proj; (%) = —ref () = ¥ — 2(X - i)u.

See Figure 7, and compare with Definition 2.2.2.

proj. (¥) 4

Figure 7
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5
EXAMPLE 3 Let V be the plane defined by 2x; -+x2 —2x3 = 0,andlet¥ = | 4|.Fin
-2
Solution 2
Note that the vector U = 1| is perpendicular to plane V (the compo!
-2
are the coefficients of the variables in the given equation of the plane: 2, 1
Thus,
NERIPEE Y
= -—F5-VU=T
i w3,

is a unit vector perpendicular to V, and we can use the formula we deriv
":

refy () =% — 2(X - i) =

S
|
Ol
n
[y

; Rotations

Consider the linear transformation 7' from R2 to R? that rotates any vect:
a fixed angle 0 in the counterclockwise direction,’ as shown in Figu
Example 2.1.5, where we studied a rotation through 6 = 7 /2.

T(¥)

Y

Figure 9

r Figure 8

5We can define a rotation more formally in terms of the polar coordinates of %. The lei
equals the length of X, and the polar angle (or argument) of T (%) exceeds the polar an




jer:

rough
Recall

T (%)
by 6.

Theorem 2.2.3

EXAMPLE 4

EXAMPLE 5
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Now consider Figure 9, where we introduce the auxiliary vector y, obtained

by rotating X through 7 /2. From Example 2.1.5 we know that if x = Bl} , then
2

y = [_iz] . Using basic trigonometry, we find that
1

T (X) = (cos 0)X + (sin8)y = (cos6) Bﬂ + (sinb) [_ﬁ]

[(cos 8)x; — (sinf)x;
| (sin8)x1 + (cos 0)x2

_ [coso —sing] [x;
|sinf  cosf| |x;

_ [cos® —sing] .
| sinf  cos@ |’

This computation shows that a rotation through 6 is indeed a linear transformation,
with the matrix

cos® —sind
sin @ cos@ |’

Rotations
The matrix of a counterclockwise rotation in R? through an angle 6 is

cos@ —sinf
sin@ cosf |’

Note that this matrix is of the form [a _Z] , where a? + b* = 1. Conversely,

b
any matrix of this form represents a rotation.

The matrix of a counterclockwise rotation through 7 /6 (or 30°) is

[cos(n/6) —sin(n/6)] _1 [«/? —-1]
21 1 3]

sin(rz /6) cos(r/6)

Rotations Combined with a Scaling

Examine how the linear transformation

T(%) = [Z ’.b} by

a

affects our standard letter L. Here a and b are arbitrary constants.

Solution
Figure 10 suggests that T represents a rotation combined with a scaling. Think polar

coordinates: This is a rotation through the polar angle @ of vector Z , combined
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rcos 6

Figure 11

Theorem 2.2.4

algebraically, we can write the vector [ b

Linear Transformations

with a scaling by the magnitude r = Ja? + b? of vector [Z] . To verify t

aj. .
] in polar coordinates, as

al| _ rcost
bl = |rsind|’

1
H i
L il 2 E
0 |

Figure 10

as illustrated in Figure 11. Then
a —bj _ rcos® -—rsin@| . cosd —sinf
b al|l |rsin@ rcosb ~ " lsing cosf|’

. la -b}| . . .
It turns out that matrix [b a} is a scalar multiple of a rotation

claimed.

Rotations combined with a scaling

. a . . .
A matrix of the form [ b } Tepresents a rotation combined with

More precisely, if r and 6 are the polar coordinates of: vector

b

[a —b] represents a rotation through 6 combined with a scaling b

Shears
We will introduce shears by means of some simple ex

and a deck of cards.®
In the first experiment, we place the deck of cards on the ruler,

Figure 12. Note that the 2 of diamonds is placed on one of the short
ruler. That edge will stay in place throughout the experiment. Now we
short edge of the ruler up, keeping the cards in vertical position at ¢
cards will slide up, being “fanned out,” without any horizontal displac

periments inve

6Two hints for instructors:
« Use several decks of cards for dramatic effect.

« Hold the decks together with a rubber band to avoid embarrassing accidents.
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) 1\

Figure 12

Figure 13 shows a side view of this transformation. The origin represents the
ruler’s short edge that is staying in place.

—_—
T
0 o]

Ruler

Figure 13

Such a transformation T is called a vertical shear. If we focus on the side view
only, we have a vertical shear in R? (although in reality the experiment takes place
in 3-space).

- X
Now let’s draw a vector x = [xl
2

a formula for the sheared vector T (X), using Figure 14 as a guide. Here, k denotes
the slope of the ruler after the transformation:

B [ R

Deck of Cards

] on the side of our deck of cards, and let’s find

Ruler

Figure 14

We find that the matrix of a vertical shear is of the form [Ii (1)] , where k is an

arbitrary constant.
Horizontal shears are defined analogously;.consider Figure 15.

Ruler

Deck of
Cards

Figure 15
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We leave it as an exercise for the reader to verify that the matrix of a 1
shear is of the form [(1) I; _Take another look at part (¢) of Example 1.

Oblique shears are far less important in applications, and we will no
them in this introductory text.

Theorem 2.2.5 Horizontal and vertical shears

The matrix of a horizontal shear is of the form [(l) ﬂ , and the ma

vertical shear is of the form Llc (1)] , where k is an arbitrary constant.

Let us summarize the main definitions of this section in a table.

Transformation Matrix
Scaling kI = [15 2]
by k
2
Orthogonal projection { “ ulzz} , where [:1 ] is a
onto line L uiuz Uy 2
parallel to L
Reflection [Z _l?a], where a2 + =1
about a line
Rotation [cs(l)zg ——c(s);nee] or [g —ab} , where
through angle 6

—b] __[cos® —sind
a |~ " |sing cosé

Rotation through angle 6 [Z
combined with scaling by r

Horizontal shear [(1) ’;]
Vertical shear [llc (1)}

The Scottish scholar d’Arcy Thompson showed how the shap
species of plants and animals can often be transformed into one anotlt
ear as well as nonlinear transformations.” In Figure 16 he uses a horiz
transform the shape of one species of fish into another.

- Argyropelecus olfersi. Sternoptyx diaphana.

Figure 16

7 Thompson, d’ Arcy W., On Growth and Form, Cambridge University Press, 1917.P.
this “the finest work of literature in all the annals of science that have been recor

tongue.”

R e == = g
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EXERCISES 2.2

GOAL Use the matrices of orthogonal projections,
reflections, and rotations. Apply the definitions of shears,
orthogonal projections, and reflections.

1

Sketch the image of the standard L under the linear
transformation

- 1 -
T (%) = [? 2] %

See Example 1.

. Find the matrix of a rotation through an angle of 60° in

the counterclockwise direction.

. Consider a linear transformation T from R? to R>. Use

T (¢1) and T (25) to describe the image of the unit square
geometrically.

4. Interpret the following linear transformation geometri-
cally:
- 1 17,
T(x)= [_1 J X.
5. The matrix '

10.

-0.8 -0.6
06 —0.8

represents a rotation. Find the angle of rotation (in
radians).

. Let L be the line in R that consists of all scalar multi-

2
ples of the vector | 1]. Find the orthogonal projection
2
1
of the vector |1 onto L.
1
. Let L be the line in R3 that consists of all scalar multi-
2 1
plesof | 1{.Find the reflection of the vector | 1| about
2 1
the line L.

. Interpret the following linear transformation geometri-

cally:

T(X) = [_? “(1)] X

. Interpret the following linear transformation geometri-

cally:
= 1 O -
Tx) = [1 1] x.

Eind t]?e matrix of the orthogonal projection onto the
line Z in R? shown in the accompanying figure:

11. Refer to Exercise 10. Find the matrix of the reflection

about the line L.

12.) Consider a reflection matrix A and a vector ¥ in RZ. We

define o =X + AX and ib = ¥ — AX.

a. Using the definition of a reflection, express A(AX)
in terms of X.

b. Express A? in terms of U.

Express At in terms of .

d. If the vectors ¥ and i are both nonzero, what is the
angle between U and ?

e. If the vector ¥ is nonzero, what is the relationship
between U and the line L of reflection?

Nlustrate all parts of this exercise with a sketch showing

¥, AX, A(AX), ¥, W, and the line L.

o

13. Suppose a line L in R? contains the unit vector

Wi = [”1] .
Uz
Find the matrix A of the linear transformation

T(x) = refy (X). Give the entries of A in terms of u

b
, where
—a

and up. Show that A is of the form [Z

a?+b2=1.

14. Suppose a line L in R? contains the unit vector

a. Find the matrix A of the linear transformation
T(¥) = proj; (¥). Give the entries of A in terms
of the components u1, u2, u3 of .

b. What is the sum of the diagonal entries of the matrix
A you found in part (a)?

15. Suppose a line L in R3 contains the unit vector

Find the matrix A of the linear transformation T (¥) =
refz, (¥). Give the entries of A in terms of the compo-
nents uy, Uz, #3 of .
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16.

17.

18.

CHAPTER 2 Linear Transformations

Let T'(3) = refz (X) be the reflection about the line L in
R2? shown in the accompanying figure.

a. Draw sketches to illustrate that T is linear.

b. Find the matrix of T in terms of 6.

L

—

-

Consider a matrix A of the form A= B _ﬂ , where

a? + b? = 1. Find two nonzero perpendicular vectors
3 and i such that AT = o and A = —i (write the
entries of ¥ and i in terms of a and b). Conclude that
T(#) = AX represents the reflection about the line L
spanned by v.

The linear transformation T (X) = 82 _0'§] X is

a reflection about a line L. See Exercise 17. Find the
equation of line L (in the form y = mx).

Find the matrices of the linear transformations from R3 to
R3 given in Exercises 19 through 23. Some of these trans-
formations have not been formally defined in the text. Use
common sense. You may assume that all these transfor-
mations are linear.

19.

The orthogonal projection onto the x—y-plane.

he reflection about the x—z-plane.

1. The rotation about the z-axis through an angle of 7 /2,

22.

23.
24.

counterclockwise as viewed from the positive z-axis.

The rotation about the y-axis through an angle 6, coun-
terclockwise as viewed from the positive y-axis.

The reflection about the plane y = .

Rotations and reflections have two remarkable prop-
erties: They preserve the length of vectors and the
angle between vectors. (Draw figures illustrating these
properties.) We will show that, conversely, any linear
transformation T from R? to R? that preserves length
and angles is either a rotation or a reflection (about a
line).
a. Show that if T(¥) = AX preserves length and
angles, then the two column vectors ?and i of A
must be perpendicular unit vectors.

b. Write the first column vector of A as V= [ﬂ ; note

that a® + b* £ 1, since 7 is a unit vector. Show that
for a given ¥ there are two possibilities for @, the
second column vector of A. Draw a sketch showing
7 and the two possible vectors . Write the compo-
nents of  in terms of a and b.

25.

26.

27.

28.

c. Show that if a linear transformation T fror
preserves length and angles, then T is eit
tion or a reflection (about a line). See Ex¢

Find the inverse of the matrix [é ﬂ, wh

arbitrary constant. Interpret your result geon
a. Find the scaling matrix A that transforms
8
41"
b. Find the orthogonal projection matrix E
forms 2 into e
3 0|
¢. Find the rotation matrix C that transfor:
3
Al
d. Find the shear matrix D that transfon
7
3]
e. Find the reflection matrix E that transfo
-5
5|
Consider the matrices A through E below.
06 038 3
A= [0.8 —0.6} » B= [0

036 —0.48 —0.¢
€= [—0.48 0.64] » D= [—0.(

Fill in the blanks in the sentences below.
We are told that there is a solution in eacl

Matrix represents a scaling.
Matrix represents an orthogonal p:
Matrix represents a shear.

Matrix represents a reflection.
Matrix represents a rotation.

Each of the linear transformations in pa
(e) corresponds to one (and only one) of
through J. Match them up.

a. Scaling b. Shear c.
d. Orthogonal projection e. Reflectic

SRR

7 0 T10
D‘[o 7}’ E‘[—s 1}’ F=




R2
ta-

ly.

into

into
into

} mto

through
trices A

on
0.8
—0.6|’

038
—0.6]’

X

31.

32.

33.

06 06 2 -1 0 0
G=[o.s 0.8]} H_[l 2}’ 1_[1 0]’

08 —06
7= [0.6 —0.8]

Let T be a function from R™ to R”, and let L be a func-
tion from R” to R™. Suppose that L (7 (¥)) = ¥ for all
% inR™ and T (L(3)) = ¥ forall § in R*. If T is a lin-
ear transformation, show that L is linear as well. Hint:

T+ =TLD)+TL@) = T(LE + L@)

since T is linear. Now apply L on both sides.

Find a nonzero 2 x 2 matrix A such that A% is parallel

1
2

Find a nonzero 3 x 3 matrix A such that AX is perpen-
1

dicular to | 2 |, for all ¥ in R3.
3

to the vector [ ] , for all ¥ in R2.

Consider the rotation matrix D = [

os B

- C
and the vector v = [s'

in 8

cosa —sina
sina cos o

:[, where o and B are arbi-

trary angles.
cos(a + B)
sin{a + B )} )
b. Compute Di. Use the result to derive the addition
theorems for sine and cosine:

sinfe + B) = ...

a. Draw a sketch to explain why D? = [

cosflc+B)=...,

Consider two nonparallel lines L; and L, in R2,
Explain why a vector ¥ in R? can be expressed
uniquely as

t_)'=l-51+1_)'2,

where 97 is on L and ¥ on L. Draw a sketch. The
transformation T'(¥) = ¥ is called the projection onto
Ly along L,. Show algebraically that T is linear.

One of the five given matrices represents an orthogonal
projection onto a line and another represents a reflec-

tion about a line. Identify both and briefly justify your

choice.
1 1 2 2 1 1
A=§ 2 1 2y, B=-|1 1],
2 21 1 1 1
1 2 1 1] 1 1 2 2
C=§ 1 2 1}, D=—§ 2 1 2%,
1 1 2] 2 21
1"——1 2 2
| 2 2 -1

37. The trace of a matrix

38. The determinant of a matrix [Z
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35. Let T be an invertible linear transformation from R to

R2. Let P be a parallelogram in R? with one vertex at
the origin. Is the image of P a parallelogram as well?
Explain. Draw a sketch of the image.

X2

*1

36. Let T be an invertible linear transformation from R? to

R2. Let P be a parallelogram in R2, Is the image of P
a parallelogram as well? Explain.

x

d
diagonal entries. What can you say about the trace of a
2 x 2 matrix that represents a(n)

a. orthogonal projection b. reflection about a line
¢. rotation d. (horizontal or vertical) shear.

In three cases, give the exact value of the trace, and in
one case, give an interval of possible values. -

EY)

X1

is the sum a + d of its

Z is ad — bc (we
have seen this quantity in Exercise 2.1.13 already). Find
the determinant of a matrix that represents a(n)

a. orthogonal projection b. reflection about a line
¢. rotation d. (horizontal or vertical) shear.

What do your answers tell you about the invertibility of
these matrices?

39, Describe each of the linear transformations defined by

the matrices in parts (a) through (c) geometrically, as
a well-known transformation combined with a scaling.
Give the scaling factor in each case.

“ 1] S B

c [i _;‘]

40. Let P and Q be two perpendicular lines in R2. For

a vector ¥ in R2, what is projp(¥) + projo(¥)? Give

S
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41.

42.

43.

44.

45.

46.

47.

CHAPTER 2 Linear Transformations

your answer in terms of %. Draw a sketch to justify your
answer.

Let P and Q be two perpendicular lines in R2. For
a vector # in R2, what is the relationship between
refp (%) and refg(X)? Draw a sketch to justify your
answer. ‘

Let T'(¥) = proj, (¥) be the orthogonal projection onto
a line in R2. What is the relationship between T (¥) and
T (T (&))? Justify your answer carefully.

Use the formula derived in Exercise 2.1.13 to find the
inverse of the rotation matrix

cos@ —sind
A= [sin@ cose]'

Interpret the linear transformation defined by A1 geo-
metrically. Explain.

A nonzero matrix of the form A = B —Z] repre-

sents a rotation combined with a scaling. Use the for-
mula derived in Exercise 2.1.13 to find the inverse of
A, Interpret the linear transformation defined by A7l
geometrically. Explain.

a

A matrix of thé form A = [ b} , where a? + b =

b —a
1, represents a reflection about a line. See Exercise 17.
Use the formula derived in Exercise 2.1.13 to find the

inverse of A. Explain.

A nonzero matrix of the form A = {(Z _Z] repre-

sents a reflection about a line L combined with a scal-
ing. (Why? What is the scaling factor?) Use the formula
derived in Exercise 2.1.13 to find the inverse of A. Inter-
pret the linear transformation defined by A~1 geomet-
rically. Explain.

In this exercise we will prove the following remark-
able theorem: If T(¥) = AX is any linear transfor-
mation from R? to R2, then there exist perpendicular
unit vectors Ty and ¥y in R? such that the vectors T @)
and T (%) are perpendicular as well (see the accom-
panying figure), in the sense that T(@1) - T@2) =
0. This is not intuitively obvious: Think about the
case of a shear, for example. For a generalization, see
Theorem 8.3.3.

cost
For any real number f, the vectors [sin t} and

—sint . . .
cost “will be perpendicular unit vectors. Now we

can consider the vfunction
cost —sint
fo= (T [sint}) ’ (T [ cost ])
- (alm]) ()
sin ¢ cost

48.

49.

50.

It is our goal to show that there exists a num
cosc —sinc
that f(c) = (T [sinc]) ' (T [ cosc ])
COSCY and B = —f
sinc . cc
have the required property that they are pet
unit vectors such that T'(1) - T(12) = 0.
a. Show that the function f(?) is continuow:

assume that cost, sinf, and constant fu
continuous. Also, sums and products of

the vectors U1 =

functions are continuous. Hint: Write A

b. Show that f (5) = —f(©).

c. Show that there exists a number c, with !
such that f(c) = 0. Hint: Use the i
value theorem: If a function f(z) is cor
a <t < bandif L is any number betwe
f (b), then there exists a number ¢ betw
with f(c) = L.

X I S

X1

If 22 x 2 matrix A represents a rotation, fir
ular unit vectors vy and Ty in R? such th
T (%) and T (D7) are perpendicular as wi
cise 47.

For the linear transformations T in

through 52, do the following:

a. Find the function f(t) defined in Ex
graph it for 0 < t < 5. You may use

b. Find a number ¢, with 0 < ¢ =
f(c) = 0. (In Problem 50, approxin
significant digits, using technology.)

¢. Find perpendicular unit vectors b
such that the vectors T (1) and 1
pendicular as well. Draw a sketch si
T(T)l), and T(ii'z).

TG) = ﬁ _24] 7

TG) = B i]}

L T@E) = ﬁ ;}z
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52.

53.

54,

85.

z=cos(sin(x)) y

> 0 4|,
TXx) = [ 5 _3] X
Sketch the image of the unit circle under the linear

transformation

- 5 0],
T(x) = [ 0 2} x.
Let T be an invertible linear transformation from R? to
R2. Show that the image of the unit circle is an ellipse
centered at the origin.® Hinz: Consider two perpendicu-
lar unit vectors ¥ and U such that T (¥;) and T (1)) are
perpendicular. See Exercise 47. The unit circle consists
of all vectors of the form

¥ = cos(?)v; + sin(t) s,
where ¢ is a parameter.

Let i; and i be two nonparallel vectors in RZ. Con-
sider the curve C in R? that consists of all vectors of
the form cos(z)w + sin(¢)u,, where ¢ is a parameter.
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Show that C is an ellipse. Hint: You can interpret C as
the image of the unit circle under a sunitable linear trans-
formation; then use Exercise 54.

56. Consider an invertible linear transformation T from R?

to R2. Let C be an ellipse in RZ. Show that the image
of C under T is an ellipse as well. Hinz: Use the result
of Exercise 55.

Matrix Products

z Recall the composition of two functions: The composite of the functions y =
z=cos(y) Sin(x) and z = cos(y) is z = cos(sin(x)), as illustrated in Figure 1.
Similarly, we can compose two linear transformations.

Figure |

<l

To understand this concept, let’s return to the coding example discussed in Sec-

/ tion 2.1. Recall that the position X = {x
y = sin(x) X2

x radio the encoded position y = [

U oof your boat is encoded and that you

Y1

y ] to Marseille. The coding transformation is
2

= AX¥, with A=[1 2].

35

In Section 2.1, we left out one detail: Your position is radioed on to Paris, as you
would expect in a centrally governed country such as France. Before broadcasting
to Paris, the position y is again encoded, using the linear transformation

8 An ellipse in R? centered at the origin may be defined as a curve that can be parametrized as

cos(t)ib; + sin(t)idy,

for two perpendicular vectors i; and 2. Suppose the length of i), exceeds the length of u,. Then we
call the vectors i, the semimajor axes of the ellipse and £, the semiminor axes.

Convention: All ellipses considered in this text are centered at the origin unless stated otherwise.




