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CHAPTER

Linear Transformations

Introduction to Linear Transformations and Their Inverses

Imagine yourself cruising in the Mediterranean as a crew member on a French
coast guard boat, looking for evildoers. Periodically, your boat radios its position to
headquarters in Marseille. You expect that communications will be intercepted. So,
before you broadcast anything, you have to transform the actual position of the boat,

-]

(x1 for Eastern longitude, x for Northern latitude), into an encoded position
)
y2

y1= x + 3x
vz = 2x1 + 5x3.

You use the following code:

For example, when the actual position of your boat is 5° E, 42° N, or

)_c. x| _ 5
o X2 - 421’
your encoded position will be

> _in| _ x1+ 3x; _ 54+3-42 _ 131
Y= 9| T 20 + 500 T |2-5+5.42| T [220]

See Figure 1.
The coding transformation can be represented as
yi| _ | xi+3x2 _[1 3| [x
. va| 2% +5x] |2 5] |x|
—— e — e~

-y A x
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encoded position

- )

actual position
el A
X7 142
Figure 1
or, more succinctly, as
3 = A7,

The matrix A is called the (coefficient) matrix of the transformation.
A transformation of the form

y = AX

is called a linear transformation. We will discuss this important concept
detail later in this section and throughout this chapter.

As the ship reaches a new position, the sailor on duty at headquarte
seille receives the encoded message

» 133

b= [223] '
He must determine the actual position of the boat. He will have to solve
system

AX = l;,
or, more explicitly,

x1+3x = 133
2x1 + 5x, =223}

Here is his solution. Is it correct?

- x1 4-‘
X = =
X2 43_
As the boat travels on and dozens of positions are radioed in, the s

little tired of solving all those linear systems, and he thinks there must b
formula to simplify the task. He wants to solve the system

x1+3x2=n
23(.'1 + 5JC2 =y

when y; and y, are arbitrary constants, rather than particular numerical
is looking for the decoding transformation

> >
y—=> X
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which is the inverse' of the coding transformation

The method of finding this solution is nothing new. We apply elimination as we
have for a linear system with known values y; and y,:

x1+3xn=y — X1+ 3x= —
2 +50m= -2( X2 =21+ +(=1)
x1+30= v =3{D X1 ==3y1+3»
X =2y1—»n — x2= 2y1— |

The formula for the decoding transformation is

x1 = —5y1 + 3y,
x2= 2y1— ¥y,
or

el - _5 3
X = By, whereB_[ 2 _1].

Note that the decoding transformation is linear and that its coefficient matrix is

-5 3
B = .
iter [ 2 —IJ

The relationship between the two matrices A and B is shown in Figure 2.

[ar-
Coding. wi 113
oding, with matrix A = 25
iy
L I
lcar Decoding, with matrix B = [ 5 _1:|
Figure 2
Since the decoding transformation X = BY is the inverse of the coding trans-
formation y = AX, we say that the matrix B is the inverse of the matrix A. We can
write this as B = A™L.
Not all linear transformations
: X1 N »
| X2 Y2
f are invertible. Suppose some ignorant officer chooses the code
ets a | = x1+2x . . 1 2
with matrix A =
1eral Yo = 2x1 + 4xp : 2 4

for the French coast guard boats. When the sailor in Marseille has to decode a
position, for example,

- [ 89
. He b= [178] ’

L 4

'We will discuss the concept of the inverse of a transformation more systematically in Section 2.4.
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EXAMPLE |

EXAMPLE 2

he will be chagrined to discover that the system

X1+ 2xp = 89
2x1 + 4x, =178

has infinitely many solutions, namely,

x| _ 89 — 2t
X2 - t ’
where ¢ is an arbitrary number.
Because this system does not have a unique solution, it is impossible tc

the actual position from the encoded position: The coding transformation
coding matrix A are noninvertible. This code is useless!

Now let us discuss the important concept of linear transformations i
detail. Since linear transformations are a special class of functions, it may b

to review the concept of a function first.
Consider two sets X and Y. A function T from X to ¥ is arule thata

with each element x of X a unique element y of Y. The set X is called the
of the function, and Y is its target space. We will sometimes refer to x as
of the function and to y as its output. Figure 3 shows an example where d

and target space Y are finite.
T

Figure 3 Domain X and target space ¥ of a function T.

In precalculus and calculus, you studied functions whose input and ¢

scalars (i.e., whose domain and target space are the real numbers R or ¢
R); for example,
2

t—1"

Tn multivariable calculus, you may have encountered functions whose ing
put were vectors.

y=x2, f(x)=¢€, gt)=

2 242
y=xy+x3+x3

This formula defines a function from the vector space R3 to R. The ir

X1
vector X = | x7 |, and the output is the scalar y.
x3
cos(r)
7= | sin(?)

t

This formula defines a function from R to the vector space R3, with i
output 7.
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Definition 2.1.1

EXAMPLE 3
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‘We now return to the topic of linear transformations.

Linear transformations?

A function T from R™ to R” is called a linear transformation if there exists an
n X m matrix A such that

T(X) = AX,
for all X in the vector space R™.
It is important to note that a linear transformation is a special kind of function.

The input and the output are both vectors. If we denote the output vector T (X) by
¥, we can write

y = AX.
Let us write this equation in terms of its components:
1 ajl a4z - aim X1 anxy + apxy + -+ Amxm
y2 a1 G - Qom x2 aix1 + anx: + - + GmXm
= - 9
Yn pl Gn2 ' Qum Xm An1X1 + apaxa + -+ + AumXin

or
yi=aixy +anx2 + -+ AmXm
Y2 = anx1 + anxz + -+ GamXkm

Yn = Gn1X1 + @2X2 + - - + QX

The output variables y; are linear functions of the input variables x;. In some
branches of mathematics, a first-order function with a constant term, such as
y = 3x; — 7x3 + 5x3 + 8, is called linear. Not so in linear algebra: The linear func-
tions of m variables are those of the form y = ¢1x; + cax9 + -+ - + CuXy, fOr some
coefficients cy, ca, . .., C»,. By contrast, a function such as y = 3xy — 7xp + 5x3 + 8
is called affine.

The linear transformation

y1 = Tx1 + 3x;3 — 9x3 + 8x4
y2 = 6x1 + 2x7 — 8x3 + Txy

y3 = 8x1 + 4x; + Tx4
(a function from R* to R?) is represented by the 3 x 4 matrix
7 3 -9 8
A=1|6 2 -8 7]. E
8 4 07

2This is one of several possible definitions of a linear transformation; we could just as well have
chosen the statement of Theorem 2.1.3 as the definition (as many texts do). This wiil be a recurring
theme in this text: Most of the central concepts of linear algebra can be characterized in two or more
ways. Each of these characterizations can serve as a possible definition; the other characterizations
will then be stated as theorems, since we need to prove that they are equivalent to the chosen
definition. Amoyg these multiple characterizations, there is no “correct” definition (although
mathematicians may have their favorite). Each characterization will be best suited for certain purposes
and problems, while it is inadequate for others.
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EXAMPLE 4 The coefficient matrix of the identity transformation

EXAMPLE 5

Figure 4

Y1 =X1
= X

Yn = Xn
(a linear transformation from R” to R” whose output equals its input) is th
matrix

10 ...0
01 0
00 ... 1

All entries on the main diagonal are 1, and all other entries are 0. This 1
called the identity matrix and is denoted by I

1 ol 1 0 0
Iz=‘:0 1], Ib=1]0 1 0f, andsoon
0 0 1

We have already seen the identity matrix in other contexts. For exal
have shown that a linear system AX = b of n equations with n unknov
unique solution if and only if rref(A) = I,. See Theorem 1.3.4.

Consider the letter L (for Linear?) in Figure 4, made up of the vectors Ll)]

Show the effect of the linear transformation
- O - 1 Y
T(x)= [1 0] X
on this letter, and describe the transformation in words.

Solution
We have

=0 3l =[] = el =B |

as shown in Figure 5.

Y
1
==

Figure 5
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The L is rotated through an angle of 90° in the counterclockwise direction.

. . . R E:
Let’s examine the effect of transformation 7" on an arbitrary vector ¥ = [le :

o=l e=[0 o[-

We observe that the vectors ¥ and 7 (¥) have the same length,

V”xlz +x% = \/(—xz)2 + x2,

and that they are perpendicular to one another, since the dot product equals zero.
See Definition A.8 in the Appendix:

TTE = [2] - [_iﬂ = —x1xp + X% = 0.

Paying attention to the signs of the components, we see that if ¥ is in the first
quadrant (meaning that x; and x, are both positive), then T (xX) = [—?] is in the
1

second quadrant. See Figure 6.

=[]

Figure 6

We can conclude that 7'(X) is obtained by rotating vector ¥ through an angle of

. L . . - 1 - 0
90° in the counterclockwise direction, as in the special cases ¥ = ] and x = [ ]

0 2
considered earlier. (Check that the rotation is indeed counterclockwise when ¥ is in
the second, third, or fourth quadrant.) |

Consider the linear transformation T (¥) = A¥, with

A=

~N R
oo L
O N W

Find

1 0
T|0] and T (0],
0

1]

1
where for sinfplicity we write T I:O insteadof T | |0
0
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Solution
A straightforward computation shows that
1] 1 2 31 |1 1
Tlol=14 5 6| ({0]=14
0] 17 8 9110 7
and
0} 1 2 3110 3
Tlol =14 5 6| |0 =16}
1) |7 s ol 1) Lo
1 0
Note that T | 0] is the first column of the matrix A and that T |0 is
column. 0 1

We can generalize this observation:

The columns of the matrix of a linear transformation

. Then, the matrix of
07

| 0

| Theorem 2.1.2
Consider a linear transformation T from R” to R®

A= |T@E) T T@n) |, where &= 1 -

| I | -
0

To justify this result, write

Then

T@) =Aé = [V V2 - Vi

0

! ' by Theorem 1.3.8.

The vectors &1, &2, - . - » ém in the vector space R™ are sometimes re

' The standard vectors &1, &2, é; in R? are of

the_)stgm_{ard vectors in R™
byi,j, k.
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Theorem 2.1.3 Linear transformations
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EXAMPLE 7 Consider a linear transformation 7'(¥) = A% from R™ to R".

a. What is the relationship among 7' (), T (w), and T'(¢ + W), where ¢ and
are vectors in R™?

b. What is the relationship between T (v) and T (kv), where ¥ is a vector in R™
and k is a scalar?

Solution
a. Applying Theorem 1.3.10, we find that

TO+ W) =A@+ ) = AV + Aw = T(D) + T (D).

In words, the transform of the sum of two vectors equals the sum of the
transforms.

b. Again, apply Theorem 1.3.10:
T (kv) = A(kV) = kA = kT (v).

In words, the transform of a scalar multiple of a vector is the scalar multiple
of the transform. E

Figure 7 illustrates these two properties in the case of the linear transformation
T from R? to R? that rotates a vector through an angle of 90° in the counterclock-
wise direction. Compare this with Example 5.

T(k) = kT(3)*}

T(@)\| V\T

5w
|
(b)

Figure 7 (a) Illustrating the property T(4 + @) = T(3) + T ().
(b) Dlustrating the property T (kv) = kT (¥).

In Example 7, we saw that a linear transformation satisfies the two equations
T(¥+w) = T(@)+T () and T (k¥) = kT (¥). Now we will show that the converse
is true as well: Any transformation from R™ to R that satisfies these two equations
is a linear transformation.

A transformation T from R™ to R" is linear if (and only if)
a. T(¥+w) = T(¥) + T (), for all vectors © and @ in R™, and
b. T (kv) = kT (), for all vectors ¥ in R™ and all scalars k.

Proof In Example 7 we saw that a linear transformation satisfies the equations in (a)
and (b). To prove the converse, consider a transformation 7 from R™ to R” that
satisfies equations (a) and (b). We must show that there exists a matrix A such that
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T (%) = AX, for all X in the vector space R™.Letéy, ..., én be the standard
introduced in Theorem 2.1.2.

X1
- x2 - - -
T =T| . |= T(x181 + X282 + - -+ + Xm€m)
Xm
= T(x121) + T (x282) + -+ - + T (Xmém) (DY property a)
= x T @) + x2T (@) + -+ xmT (€m) (by property b)

o ] [
=|7@) TG - TGw|| . |=4%

I I | m

Here is an example illustrating Theorem 2.1.3.

EXAMPLE 8 Consider a linear transformation 7' from R2 to R? such that T(¢;) =
T(3;) = 24Uy, for the vectors 31 and ¥, sketched in Figure 8. On the sa

sketch T'(3), for the given vector X. Explain your solution.

Solution
| Using a parallelogram, we can represent % as a linear combination of ¥; 2
shown in Figure 9:

f = 01171 + 6262.
By Theorem 2.1.3,
T(®) = T(c191 + c282) = 1T (@) + e (B2) = 31t + 26202

The vector ¢17; is cut in half, and the vector ¢2 ¥, is doubled, as shown in]

Figure 8 Figure 9 Figure

: Imagine that vector ¥ is drawn on a rubber sheet. Transformation
‘ this sheet by a factor of 2 in the ¥,-direction and contracts it by a factor
¥;-direction. (We prefer “contracts by a factor of 2” to the awkward “ex

; factor of 3.”)

We will conclude this section with one more example of a linear trans
| from computer science.
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g EXAMPLE 9 Let’s develop a simple model of how people might surf the World Wide Web, by
following links. To keep things manageable, we consider a “mini-Web” with only
four pages, labeled 1, 2, 3, 4, linked as shown in the diagram below:

1 2 2
v 1
3 = 4.

Let x1, x2, x3, and x4 be the proportions of the surfers who find themselves on each
of the four pages initially; we can collect this information in the distribution vector

X1 0.4

) 1
f . For example, the initial distribution might be # = 8 3 |
3 .
X4 0.2

meaning that 40% of the surfers are on page 1, and so forth. The components of a
distribution vector add up to 1, or 100%, of course.

At a predetermined time, at the blow of a whistle, each surfer will randomly
follow one of the links: If several links are available out of a web page, then an equal
proportion of the surfers will follow each of them. For example, the proportion of
surfers taking each of the two links out of page 1 (to pages 2 and 3) will be %.

Let the vector y, with components y;, y», ¥3, y4, represent the distribution of
the surfers after the transition. According to the rules stated above, we will have

=1
I

nd
2s,

1
y1= X2
1
Y2 = EXI + X4
1
y3=35x1 +3%
Y4 = X3

or y = AX in vector form, where

o
S = O

10.

O = O N
_0 O O

[« BN ST ST

0

showing that y = T'(¥) is a linear transformation. Matrix A is referred to as the
transition matrix of this transformation.
" For example, the equation y, = %xl + x4 reflects the fact that half of the surfers
from page 1 and all of the surfers from page 4 will follow the links to page 2.
Alternatively, we can construct the matrix A column by column. The jth col-
—_— umn of A tells us where the surfers go from page j. For example, the second column
of Ais

O W=

inds
| the
by a

O M=

indicating that half of the surfers from page 2 take the link to page 1, and the other
half go to page 3. Thus, the entries in each column of A must add up to 1.

Let’s discuss the structure of matrix A more formally. Let c; be the number
of links going out of page j. For example, we have ¢, = 2 and ¢3 = 1 for our

Hon,
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mini-Web. Then the proportion of the surfers taking a link from page j tc
will be %, since the initial population x; of page j gets distributed equally
the c; outgoing links. We see that the ijth entry of A is cl', if there is a Ib
page j to page i+ the other entries are 0. Thus, we have

Ve if thereis alink j — i
%4j =1\ 0 otherwise. .~

-

7
We might wonder whether this system has any equilibrium distributions.
distributions ¥ such that AZ = . The distribution after the transition is rec
be exactly the same as before. To find out, we have to solve the linear syste

%xl + x4 = X2 %xl S 4
or
%XI + %xZ = X3 %xl + %XZ ~ %
| x3 = ‘ x3 —J
1
-1 3 0 0 0
' - 11 0 1 0
with augmented matrix M = and el
1 L 1 0 0
2 2
o o 1 -1 O
] L 0 0 -2/3 0
| 0 1 0 —-4/3 0
o 0 1 _{ ol The solutions are X} = %, Xz = 4 x3 =
o 0 0 O 0

where ¢ is an arbitrary real number. Since we are looking for a distributic
wewant x; + X0 +x3 +x4 =4t =1,50t = 1 The equilibrium distribut

1/6 16.7%

- 2 1/3|  |333%
T 1174 25%

1/4 25%

In this context, an interesting question arises: If we iterate our transitic

the surfers move to a new page over and over again, following links a

will the system eventually approach this equilibrium state Xequ, regardl
‘ initial distribution? Perhaps surprisingly, the answer is affirmative for the
by considered in this example, as well as for many others: The equilibrium di
represents the distribution of the surfers in the long run, for any initial di.
‘ We will further discuss these important issues in Theorem 2.3.11 and the
i Chapter 7.
k. In 1998, Sergey Brin and Lawrence Page, then at Stanford University,
| s a landmark paper, “The Anatomy of a Large-Scale Hypertextual Searc!

i where they present a prototype of the search engine Google. The key feal

’l search engine is a “quality ranking” of each web page, which measure
’l popularity.” They call this ranking PageRank, after the second author of
4 The basic idea is to define the popularity of a web page as the like]
i random surfers find themselves on that web page in the long run. But thit
8 the corresponding component of the equilibrium vector Xequ We found ab
# example, page 2 is the most popular, with 2 PageRank of 1/3, while pag
' half as popular, with a PageRank of 1/6.
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Actually, the model developed by Brin and Page in their 1998 paper is a bit
more complicated, involving a “jumping rate” as well. They assume that surfers
will not always follow links, but sometimes randomly jump to a new page, even if
there is no link available to that page. The “jumping rate,” often set at 0.15 or 0.2,
represents the proportion of transitions where a surfer jumps rather than following
a link. See Exercise 53. In our example, we set the jumping rate to be 0 in order to
simplify the computation. The resulting popularity ranking (with jumping rate 0) is
sometimes referred to as the naive PageRank. E

Example 9 motivates the following definitions:

Definition 2.1.4  Distribution vectors and transition matrices

A vector X in R” is said to be a distribution vector if its components add upto 1
and all the components are positive or zero.

A square matrix A is said to be a transition matrix (or stochastic matrix) if all
its columns are distribution vectors. This means that all the entries of a transition
matrix are positive or zero, and the entries in each column add up to 1.

If A is a transition matrix and X is a distribution vector, then A% will be a
distribution vector as well. See Exercise 49.

In Example 9, the vector J'c'equ is a distribution vector and the matrix A is a

. . . . 03 06] [1 O
transition matrix. Simple examples of transition matrices are 07 04l’lo 11’

2 117 . [05 —01] . " o
[0.8 1]’ and [0 OJ’Whﬂe [0.5 1.1 ] fails to be a transition matrix since

one of its entries is negative.

EXERCISES 2.1

GOAL Use the concept of a linear transformation in 0

terms of the formula y = AX, and interpret simple lin- and T |0| = [_13J .
ear transformations geometrically. Find the inverse of a 1

linear transformation from R? to R? (if it exists). Find the
matrix of a linear transformation column by column.

Consider the transformations from R? to R3 defined in
Exercises 1through 3. Which of these transformations are

Find the matrix A of T.

6. Consider the transformation 7 from R? to R? given by

linear? 1 4
x

Ly =2x 2. y1=2x yi=xm—x3 r [sz =X |2 +x (5

y2=x3+2 Y2 =3x3 Y2 = X1x3 3 6

¥3=12x y3=x ¥3=x1 —x2 . o . .

Is this transformation linear? If so, find its matrix.
4. Find the matrix of the linear transformation - o . . . n
7. Suppose vy, Vz,..., Uy are arbitrary vectors in R",

Y1 =9x1 +3x3 — 3x3 Consider the transformation from R™ to R” given by

Y2=2x1 — 9% + =x3
¥3 =4dx; — 9% — 2x3

X1
¥4 =3x1+ x3+ 5x3. .
S. Consider the linear transformation T from R? to R2 T\, | =xvitxit- .+ xmin.
with ’
Xm
1 0 ’
7 6 . . . . . .
T (0| = 1l T(1| = K Is this transformation linear? If so, find its matrix A in
0 0 terms of the vectors ¥1, v, ..., Up.
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8. Find the inverse of the linear transformation
yi= x1t+ Tx
ya = 3x1 + 20x2.
In Exercises 9 through 12, decide whether the given ma-
trix is invertible. Find the inverse if it exists. In Exercise
12, the constant k is arbitrary.

o3 i
wfig] e

. Prove the following facts:
a. The 2 x 2 matrix
a b
a-[ 4]

is invertible if and only if ad — bc # 0. Hint: Con-
sider the cases a # 0 and a = 0 separately.

b. If
a b
c d
is invertible, then

e b7 1 d —b
c d “ad—bc|—-c al’

[The formula in part (b) is worth memorizing.]

/\’/1:9 a. For which values of the constant k is the matrix
- E 3 invertible?
b. For which1 values of the constant k are all entries of
2 31
i 9
[5 k] integers?
See Exercise 13.

15. For which values of the constants a and b is the matrix

a —b
A=l
invertible? What is the inverse in this case? See Exer-
cise 13.

Give a geometric interpretation of the linear transforma-
tions defined by the matrices in Exercises 16 through 23.
Show the effect of these transformations on the letter L
considered in Example 5. In each case, decide whether the
transformation is invertible. Find the inverse if it exists,
and interpret it geometrically. See Exercise 13.

3 0 -1 0 05 0
16. [0 3} 17, [ ! _l] 18. [ : 0_5]

1 0 To 1 01
19, [0 0]7 20. [1 0] 21. [_1 0}

10 0 2
SRR

Consider the circular face in the accompanying fiy
each of the matrices A in Exercises 24 through
a sketch showing the effect of the linear transfi
T (X) = AX on this face.

I
A
30. [g ‘1’]

31. n Chapter 1, we mentioned that an old G
shows the mirror image of Gauss’s likeness. \
transformation T can you apply to get the act
back?

32. Find an n x r matrix A such that AX =:
in R™.

33. Consider the transformation 7 from R?
rotates any vector ¥ through an angle of 45°
terclockwise direction, as shown in the follo

T(¥)

45°

"y

You are told that T is a linear transformatic
be shown in the next section.) Find the ma

34. Consider the transformation T from R? t
tates any vector X through a given angle 6
terclockwise direction. Compare this with
You are told that T is linear. Find the m

terms of 8.
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35. In the example about the French coast guard in this sec-
tion, suppose you are a spy watching the boat and listen-
ing in on the radio messages from the boat. You collect
the following data:

T -] . |89
o When the actual position is [ 4 2] , they radio [ 5 2] .

e When the actual position is [ 4(15] , they radio [g} .

Can you crack their code (i.e., find the coding matrix),
assuming that the code is linear?

36. Let 7 be a linear transformation from R? to R2. Let & 1
77, and i be three vectors in RZ, as shown below. We
are told that 7' (V1) = v and T (¥3) = 3. On the same
axes, sketch T (w).

&

-

vy

37. Consider a linear transformation T from R? to R2. Sup-
pose that ¥ and i are two arbitrary vectors in R? and
that ¥ is a third vector whose endpoint is on the line
segment connecting the endpoints of ¥ and i. Is the
endpoint of the vector T (X¥) necessarily on the line seg-
ment connecting the endpoints of 7 (¥) and T ()? Jus-
tify your answer.

(%)

T'E)
T(¥)

Hint: We can write ¥ = v + k(i — ¥), for some scalar
k between 0 and 1.

We can summarize this exercise by saying that a
linear transformation maps a line onto a line.

.} The two column vectors #; and ¥, of a 2 x 2
matrix A are shown in the accompanying sketch, Con-
sider the linear transformation T (x¥) = A¥, from R2 to
R2. Sketch the vector

- Show that if 7T is a linear transformation from R™ to
i R”, then

x1
X2 - - -
T . | =x1T€)+xT )+ +xmT(em),
Xm
where €1, €3, ..., é, are the standard vectors in R™.

40. Describe all linear transformations from R (= R1) to R.
‘What do their graphs look like?

41, Describe all linear transformations from R? to R
(= R!). What do their graphs look like?

42. When you represent a three-dimensional object graphi-
cally in the plane (on paper, the blackboard, or a com-
puter screen), you have to transform spatial coordinates,

X1
X2,
X3

y

into plane coordinates, { 1] . The simplest choice is a
2

linear transformation, for example, the one given by the
matrix

-5 1 0
01

D= Rf=

a. Use this transformation to represent the unit cube
with corner points

0] 1] [0 [0]
0 ’ O F) 1 [l 0 )
o] o] o] 1]
17 [0] (1] (17
1, {1}, .1
10] | 1] 1] | 1]
Include the images of the x1, x, and x3 axes in your
sketch:
Y2
+1
; t »1
-1 1
T -1
1
b. Represent the image of the point % in your fig-
1
2

ure in part (a).
(part ¢ on next page)
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43.

44.

45.

s

@

47.
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¢. Find all the points 48.

X1
x3| in R3
X3

that are transformed to [(())] . Explain.

2

a. Consider the vector ¥ = |3 | . Is the transformation
4

T(%) = © - 3 (the dot product) from R to R linear?

If so, find the matrix of T. ><

b. Consider an arbitrary vector ¥ in R?. Is the transfor-
mation T'(X) = D - X linear? If so, find the matrix of
T (in terms of the components of ¥).

¢. Conversely, consider a linear transformation 7 from
R3 to R. Show that there exists a vector ¥ in R? such
that T(¥) = ¥ - %, for all ¥ in R?.

The cross product of two vectors in R3 is given by
ai b axbs — asbs
ar| x |by| = |azby —a1bs ] . 50.
a3 b3 arby — axby

See Definition A9 and Theorem A.11 in the

Appendix. Consider an arbitrary vector v in R3. Is the 51.

transformation T(¥) = ¥ x % from R? to R? linear?
If so, find its matrix in terms of the components of the
vector .

Consider two linear transformations y = T (%) and 52.
z = L(3), where T goes from R™ to R” and L goes
from RP to R”. Is the transformation z = L (7 (%)) lin-
ear as well? [The transformation 7 = L (T (¥)) is called 53
the composite of T and L.] N (7
Let

N R

c d r s

Find the matrix of the linear transformation T(X) =
B(AR). See Exercise 45. Hint: Find T'(¢1) and T (é2).

Let T be a linear transformation from R? to R2. Three
vectors 31, B2, % in R? and the vectors 7'(¥1), T (¥2)
are shown in the accompanying figure. Sketch T ().
Explain your answer.

T(%)

- Y1
YACH)

Consider two linear transformations 7 and L
to R2. We are told that T(¥1) = L(¥1) and
L(%,) for the vectors ¥ and v sketched bel
that T(%) = L(&), for all vectors ¥ in R?.

I

__——-______...--'1-51
—

. Prove that if A is a transition matrix and ¥ is
_ tion vector, then AX is a distribution vector a

For each of the mini-Webs in Exercises 50t
a. find the transition matrix A as definedin
b. find the equilibrium distribution, and

c. find the web page(s) with the highest (nc
Rank.

Feel free to use technology throughout.

122
1/t
3>4
1 - 2
noq
324
122
1/

W

. As in Example 9, consider the mini-Web %

structure shown in the diagram below:

Again, let vector X represent the distributic
among the various pages at a given time. Fc
1998 paper by Brin and Page (see Example
sider a more sophisticated model of transj
blow of a whistle, 80% of the surfers on a
will randomly follow a link, while the remn
will randomly “jump” to a web page (even
available). The jumpers have the option tc
current page. For example, of the surfers
tially on page 2, 40% will follow the lin]
40% will follow the link to page 3, and 5%
any of the four webpages. If we add up the
the link-followers, we see that 45% will mo
another 45% go to page 3; 5% will jump tc
5% will stay put on page 2. Thus, the secor
the transition matrix B will be




52,
le9,

'ge-

rfers
g the
con-
t the
page
20%
nk is
n the
2 ini-
ge 1,
np to
s and
ige 1;
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54.
35.
56.
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0.4+ 0.05 045
0.05 0.05
044005|  |045
0.05 0.05
t N
link jumpers
followers

Let ¥ be the distribution vector after the transition; we
have y» = 0.45x; + 0.05xp + 0.05x3 + 0.85x4, for
example.

a. Find the transition matrix B such that y = BX.

b. Explain why B = %E + 0.84 = 0.05E + 0.8A,
where A is the matrix we found in Example 9, E is
the matrix whose entries are all 1, and N is the total
number of web pages.

¢. Find the equilibrium distribution J'Eeq u» such that
BXequ = Zequ. Feel free to use technology. (The
components of this equilibrium solution represent
the PageRank of the various web pages, as defined
in the 1998 paper by Brin and Page.)

For each of the mini-Webs in Exercises 54 through 56,

a. find the transition matrix B as defined in Exercise
53 (with a jumping rate of 20%),

b. find the equilibrium distribution for the transition
matrix B, and

c. find the web page(s) with the highest PageRank
(with a jumping rate of 20%).

Feel free to use technology throughout.

=

FNCT
)

1
}
3

N
A2

122

/!
3

Some parking meters in downtown Geneva, Switzer-
land, accept 2 Franc and 5 Franc coins.

a. A parking officer collects 51 coins worth 144
Francs. How many coins are there of each kind?

b. Find the matrix A that transforms the vector

number of 2 Franc coins
nurnber of 5 Franc coins
into the vector

total value of coins ’
total number of coins | ©

-

¢. Is the matrix A in part (b) invertible? If so, find the
inverse (use Exercise 13). Use the result to check
your answer in part (a).

58. A goldsmith uses a platinum alloy and a silver alloy to

59.

60.

make jewelry; the densities of these alloys are exactly

20 and 10 grams per cubic centimeter, respectively.

a. King Hiero of Syracuse orders a crown from this
goldsmith, with a total mass of 5 kilograms (or
5,000 grams), with the stipulation that the platinum
alloy must make up at least 90% of the mass. The
goldsmith delivers a beautiful piece, but the king’s
friend Archimedes has doubts about its purity. While
taking a bath, he comes up with a method to check
the composition of the crown (famously shouting
“Eureka!” in the process, and running to the king’s
palace naked). Submerging the crown in water, he
finds its volume to be 370 cubic centimeters. How
much of each alloy went into this piece (by mass)?
Is this goldsmith a crook?

b. Find the matrix A that transforms the vector

mass of platinum alloy
mass of silver alloy

into the vector

total mass
total volume | ’

for any piece of jewelry this goldsmith makes.

¢. Is the matrix A in part (b) invertible? If so, find the
inverse (use Exercise 13). Use the result to check
your answer in part (a).

The conversion formula C = 3(F — 32) from
Fahrenheit to Celsius (as measures of temperature) is
nonlinear, in the sense of linear algebra (why?). Still,
there is a technique that allows us to use a matrix to
represent this conversion.

a. Find the 2 x 2 matrix A that transforms the vector

[I” into the vector {(1:] (The second row of A

willbe [0 1]

b. Is the matrix A in part (a) invertible? If so, find the
inverse (use Exercise 13). Use the result to write a
formula expressing F in terms of C.

In the financial ‘pages of a newspaper, one can some-
times find a table (or matrix) listing the exchange rates
between currencies. In this exercise we will consider
a miniature version of such a table, involving only
the Canadian dollar (C$) and the South African Rand
(ZAR). Consider the matrix

C$ ZAR

[1 18] cs
A—[s I]ZAR
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61.

representing the fact that C$1 is worth ZARS (as of

September 2012).

a.

100
1,600

cal significance of the two components of the vector

Verify that matrix A fails to be inyertible. For which
vectors b is the system AX¥ = b consistent? What

}. Compute AX. What is the practi-

62. Consider an arbitrary currency exchange mat
Exercises 60 and 61.

After a trip you have C$100 and ZAR1,600 in your a. What are the diagonal entries a;; of A?
pocket. We represent these two values in the vec-

b. What is the relationship between a;; and ¢

¢. What is the relationship among ajk, @kj, 2

d. What is the rank of A? What is the re
between A and ref(A)?

63. Solving a linear system AX = 0 by Gaussia
tion amounts to writing the vector of leading
as a linear transformation of the vector of free

is the practical significance of your answer? If the Consider the linear system
system A¥ = b is consistent, how many solutions ¥
are there? Again, what is the practical significance X1 — X3 +4x5 =0
of the answer? x3 — x=0
Consi . x4 —2x5 =0.
onsider a larger currency exchange matrx (see Exer-
cise 60), involving four of the world’s leading curren- x1
cies: Euro (€), U.S. dollar ($), Chinese yuan (), and Find the matrix B such that | x3 | = B [xz
British pound (£). x1 X5
€ § ¥ £ 64. Consider the linear system-
x 08 % =x*7€
A | *oF X x| $ x; +2x2+ x3+ Txa=0
- * *+ x 10|¥ x1 4 2x0 +2x3 + 1lxg = 0
08 x + x1£ X1+ 2x2 + 3x3 + 15%4 =0

The entry a;; gives the value of one unit of the jth
currency, expressed in terms of the ith currency. For
example, ass4 = 10 means that £1 = ¥10 (as of
August 2012). Find the exact values of the 13 missing
entries of A (expressed as fractions).

x1 + 2x2 + 4x3 + 19x4 = 0.

Find the matrix B such that [i;] = B

Exercise 63.

mT_inear Transformations in Geometry

EXAMPLE |

In Example 2.1.5 we saw that the matrix [(1) 0 represents a counte:

rotation through 90° in the coordinate plane. Many other 2 x 2 matr
simple geometrical transformations as well; this section is dedicated to a
of some of those transformations.

Consider the matrices
2 0 1 0 -1 0
I R B R R

01 1 02 1 -1
=9 o = 2| and F=|) )

Show the effect of each of these matrices on our standard letter L3 a
each transformation in words.

3See Example 2.1.5. Recall that vector [(1)] is the foot of our standard L, and [g] isits



