44.

45.

46.

47.

CHAPTER I Linear Equations

Explain briefly how you found these graphs.
Argue geometrically, without solving the system al-
gebraically.

b. Now solve the system algebraically. Verify that the
graphs you sketched in part (a) are compatible with
your algebraic solution.

Find a system of linear equations with three unknowns
whose solutions are the points on the line through
(1,1, 1) and (3, 5, 0).

Find a system of linear equations with three unknowns
X, ¥, 2 whose solutions are

x=6+5, y=4+4+3t and z=2+1,
where ¢ is an arbitrary constant.

Boris and Marina are shopping for chocolate bars. Boris
observes, “If 1 add half my money to yours, it will
be enough to buy two chocolate bars.” Marina naively
asks, “If T add half my money to yours, how many
can we buy?” Boris replies, “One chocolate bar.” How
much money did Boris have? (From Yuri Chernyak and
Robert Rose, The Chicken from Minsk, Basic Books,
1995.)

Here is another method to solve a system of linear equa-
tions: Solve one of the equations for one of the vari-
ables, and substitute the result into the other equations.
Repeat this process until you run out of variables or
equations. Consider the example discussed on page 2:

x+2y+3z=39
x+3y+4+2z=34|.
3x4+2y+ z=26
‘We can solve the first equation for x:
x=39—-2y—3z.
Then we substitute this equation into the other equa-
tions:

(B9—-2y—-32)+3y+2:=34
339 -2y —-32)+ 2y + z=26|"

48.

49.

50.

We can simplify:
y— z= -5
—4y — 8z = -91|°
Now, y = z — 5,sothat —4(z — 5) — 8z = —¢
—12z = —111.

We find that 7z = % = 9.25. Then
y=1z-—5=4.725,
and
x=39—-2y—3z=275.

Explain why this method is essentially the sar
method discussed in this section; only the boo
is different.

A hermit eats only two kinds of food: brown

yogurt. The rice contains 3 grams of protei

grams of carbohydrates per serving, while tt

contains 12 grams of protein and 20 grams of

drates.

a. If the hermit wants to take in 60 grams o
and 300 grams of carbohydrates per day, h
servings of each item should he consume?

b. If the hermit wants to take in P grams o
and C grams of carbohydrates per day, h
servings of each item should he consume?

I have 32 bills in my wallet, in the denomin
US$ 1, 5, and 10, worth $100 in total. How n
have of each denomination?

Some parking meters in Milan, Italy, accept co
denominations of 20¢, 50¢, and €2. As an
program, the city administrators offer a big 1
brand new Ferrari Testarossa) to any meter n
brings back exactly 1,000 coins worth exactly
from the daily rounds. What are the odds of th
being claimed anytime soon?

Matrices, Vectors, and Gauss—jordan Elimination

‘When mathematicians in ancient China had to solve a system of simultaneo

equations such as*

3x+2ly—-3z= 0

—6x — 2y — z=62|,

2x — 3y+8z=32

4This example is taken from Chapter 8 of the Nine Chapters on the Mathematical Art; see pi
source is George Gheverghese Joseph, The Crest of the Peacock, Non-European Roots of Ma
3rd ed., Princeton University Press, 2010.
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they took all the numbers involved in this system and arranged them in a rectangular
pattern (Fang Cheng in Chinese), as follows:’

3021 -3 0
6| -2 -1 62
|61 —c4110)

2 -3 8|32

All the information about this system is conveniently stored in this array of
numbers.

The entries were represented by bamboo rods, as shown below; red and black
rods stand for positive and negative numbers, respectively. (Can you detect how this
number system works?) The equations were then solved in a hands-on fashion, by
manipulating the rods. We leave it to the reader to find the solution.

Today, such a rectangular array of numbers,

3 21 -3 0
-6 —2 -1 62/,
2 -3 8 32]

is called a matrix.® Since this particular matrix has three rows and four columns, it
1s called a 3 x 4 matrix (“three by four™).

The four columns of the matrix

AN N

3 21 -3 O
The three rows of the matrix <E -6 -2 -1 62
2 =3 § 32

Note that the first column of this matrix corresponds to the first variable of the
system, while the first row corresponds to the first equation.

It is customary to label the entries of a 3 x 4 matrix A with double subscripts
as follows:

ail a2 a1z a4
A= |ay axn a3 axn
asy das as ax

The first subscript refers to the row, and the second to the column: The entry a;; is
located in the ith row and the jth column.
Two matrices A and B are equal if they are the same size and if corresponding
entries are equal: a;; = b;;.
. If the number of rows of a matrix A equals the number of columns (A is n x n),
then A is called a square matrix, and the entries a1, @, ..., du, form the (main)
diagonal of A. A square matrix A is called diagonal if all its entries above and below

L4
5 Actually, the roles of rows and columns were reversed in the Chinese representation.

St appears that the term matrix was first used in this sense by the English mathematician
I. 1. Sylvester, in 1850.
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the main diagonal are zero; that is, a;; = 0 whenever i # j. A square matt
called upper triangular if all its entries below the main diagonal are zero;
a;; = 0 whenever i exceeds j. Lower triangular matrices are defined analo
A matrix whose entries are all zero is called a zero matrix and is denote
(regardless of its size). Consider the matrices

; 2
A=[l 23]’ B=[12’ c-lo
0

0
0},
45 6 3 4 o

O W o

[5 0 0
D= [3 i:| , E=14 0 0
(3 2 1
The matrices B, C, D, and E are square, C is diagonal, C and D are upper t

lar, and C and E are lower triangular.
Matrices with only one column or row are of particular interest.

Vectors and vector spaces
A matrix with only one column is called a column vector, or simply a v
The entries of a vector are called its components. The set of all column vi
with n components is denoted by R"; we will refer to R” as a vector space
A matrix with only one row is called a row vector.
In this text, the term vector refers to column vectors, unless otherwise s
The reason for our preference for column vectors will become apparent
next section.

Examples of vectors are

a (column) vector in R*, and
15 5 3 7],

a row vector with five components. Note that the m columns of an z X m ms
vectors in R”.

In previous courses in mathematics or physics, you may have thougt
vectors from a more geometric point of view. See the Appendix for a sum
basic facts on vectors. Let’s establish some conventions regarding the ge
representation of vectors.

Standard representation of vectors
The standard representation of a vector

=13
(x.y) Ty

in the Cartesian coordinate plane is as an arrow (a directed line segment
v= [:y] . the origin to the point (x, y), as shown in Figure 1.
The standard representation of a véctor in R? is defined analogously.

In this text, we will consider the standard representation of vectors,
Figure | stated otherwise.
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(a+x,b+y)
..
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Figure 2
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Occasionally, it is helpful to translate (or shift) a vector in the plane (preserving
its direction and length), so that it will connect some point (a, b) to the point (a +
x, b+ y), as shown in Figure 2.

When considering an infinite set of vectors, the arrow representation becomes

. . . . . - x| .
impractical. In this case, it is sensible to represent the vector v = [y simply by
the point (x, y), the head of the standard arrow representation of v.

For example, the set of all vectors U= (where x is arbitrary) can be

x
x+1
represented as the line y = x + 1. For a few special values of x we may still use the
arrow representation, as illustrated in Figure 3.

y=x+1

/ 6=[%:I,forx=1

Figure 3

In this course, it will often be helpful to think about a vector numerically, as a
list of numbers, which we will usually write in a column.

In our digital age, information is often transmitted and stored as a string of
numbers (i.e., as a vector). A 10-second clip of music on a CD is stored as a vector
with 440,000 components. A weather photograph taken by a satellite is transmitted
to Earth as a string of numbers.

Consider the system
2x + 8y +4z=2
2x+ S5y+ z=35|.
4x + 10y — z=1

Sometimes we are interested in the matrix

2 8 4
2 35 1],
4 10 -1

which contains the coefficients of the variables in the system, called its coefficient
matrix.
_ By contrast, the matrix
2 8 4 2
2 5 1 5,
4 10 -1 1

which displdys all the numerical information contained in the system, is called its
augmented matrix. For the sake of clarity, we will often indicate the position of the
equal signs in the equations by a dotted line:
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To solve the system, it is more efficient to perform the elimination
augmented matrix rather than on the equations themselves. Conceptually, -
approaches are equivalent, but working with the augmented matrix requi
writing yet is easier to read, with some practice. Instead of dividing an e
by a scalar,” you can divide a row by a scalar. Instead of adding a multipl
equation to another equation, you can add a multiple of a row to another roy

As you perform elimination on the augmented matrix, you should alw
member the linear system lurking behind the matrix. To illustrate this mett
perform the elimination both on the augmented matrix and on the linear sy

represents:
2 8 41 2] %2 2x+ 8y+ 4z= 2| =+
2 5 1 5 2x+ Sy+ z= 5
|4 10 -1 1] 4+ 10y— z= 1
2 \
1 4 21 1] x+ 4dy+ 2z= 1
5 11 5] —2( 2x+ Sy+ z= 5| -
4 10 -1 1] -4 4x + 10y - z= 1| -
\: s
1 4 2% 1] x+ 4y+ 2= 1
0 -3 -3 3| =(=3) —3y— 3z= 3| =
0 —6 -9 -3] —6y — 9z=-3
A A
1 4 27 1] -4 x+ 4dy+ 2= 1| -
1 1i1-1 y+ z=-1
0 —6 —91-3] +60D —6y — 9%2=-3] 4
1 \:
1 0 =21 5] x - 27= 5
0 1 1i-1 y+ z=-1
0 0 —31-9] +(-3 —3z=-9| =
\ A
1 0 -2} 5] +2{m) x — 2z= 5| 4
0 1 1i-1{ -—(m y+ z=-1
0 0 1} 3] = 3
\: s
¢ [1 0 01} 11] x = 11
: 0 11 3] z= 3

7In vector and matrix algebra, the term scalar is synonymous with (real) number.
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The solution is often represented as a vector:

X 11
yi=|-4
z 3

Thus far we have been focusing on systems of three linear equations with three
unknowns. Next we will develop a technique for solving systems of linear equations
of arbitrary size.

Here is an example of a system of three linear equations with five unknowns:

X1 — X2 4+ 4x5 =2
X3 — x5=2|.
X4 — JC5=3

We can proceed as in the example on page 4. We solve each equation for the leading

variable:

x1 =24 x3 — 4x5
x3=2 + Xxs5.
x4 =3 + x5

Now we can freely choose values for the nonleading variables, x; = ¢ and x5 =r,
for example. The leading variables are then determined by these choices:

x1 =2+t —4r, x3=2+r, X4 =3+4r

This system has infinitely many solutions; we can write the solutions in vector
form as

X1 2 4+t —4r
X2 t

x3| =12 +r
X4 3 +r
X5 r

Again, you can check this answer by substituting the solutions into the original
equations, for example, x3 —x5s = 2+r) —r =2.

What makes this system so easy to solve? The following three properties are
responsible for the simplicity of the solution, with the second property playing a
key role:

e P1: The leading coefficient in each equation is 1. (The leading coefficient is
the coefficient of the leading variable.)

o P2: The leading variable in each equation does not appear in any of the
other equations. (For example, the leading variable x3 of the second equation
appears neither in the first nor in the third equation.)

o P3: The leading variables appear in the “patural order,” with increasing in-
dices as we go down the system (x;, X3, x4 as opposed to x3, x, x4, for ex-
= ample).

Whenever we encounter a linear system with these three properties, we can solve
for the leading variables and then choose arbitrary values for the other, nonleading
variables, as we did above and on page 4.

Now we are ready to tackle the case of an arbitrary system of linear equations.
We will illustrate our approach by means of an example:
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2x1 + 4dxp — 2x3 4 2x4 + x5 =2
x1+ 2% — x3+ 2x4 =4

3x1+ 6x2 —2x3+ x4+ s =1|"

5x1 4+ 10x3 — 4x3 + S5x4 + 9x5 =9

We wish to reduce this system to a system satisfying the three properties
and P3); this reduced system will then be easy to solve.

We will proceed from equation to equation, from top to bottom. The
variable in the first equation is x, with leading coefficient 2. To satisfy prof
we will divide this equation by 2. To satisfy property P2 for the variable x;,
then subtract suitable multiples of the first equation from the other three e
to eliminate the variable x; from those equations. We will perform these og
both on the system and on the augmented matrix.

2x1 + 4xo — 2x3 +2x4 +4xs = 2| +2 2 4 =2 2 4 i 2

X1+ 2x — x3 4+ 2x4 = 4 1 2 -1 2 Oi 4

3x1+ 6x3 —2x3+ x4+%5= 1 3 6 -2 1 9 i 1

Sx1 +10xy — 4x3 +5x4 +9xs= 9 5 10 —4 5 91 9
M |

X1+ 2x— x3+ xa+2xs5= 1 1 2 -1 1 2! 1

X1+ 2x — x3 4 2x4 = 4, - |1 2 -1 2 0 | 4

3x1 4+ 6x3—2x3+ x4+9%xs= 1,-310 |3 6 -2 1 9 i 1

5%, + 10%, — 4x3 + 5xs + 95 = 9| -5@) |5 10 —4 5 91 9
J 1

X1+ 2x— x3+ x4+2x5= 1 1 2 -1 1 2! 1

x4 —2x5= 3 0 O 0 1 -2 i 3

x3 — 2x4 + 3x5 = —2 0 O 1 =2 3 i—2

X3 — xs= 4 0 O 1 0 —1! 4

Now on to the second equation, with leading variable x4. Since the leadin
cient is 1 already, all we need to do is eliminate x4 from the other equatio
we will proceed to the third equation and use the same approach.

xi+ 2x— x34+ x4+2x= 1| -{d) [1 2 -1 1 2 1
X4 — ZJC5 = 3 0 0 0 1 -2 3
X3 —2xa4+3xs=—242@ [0 0 1 —2 3{-2
X3 — x5= 4 o o 1 0 -1} 4
s 2
X1+ 2x2— x3 +dxs=-2|+1MH 11 2 -1 0 4 1 -2
X4 —2x5= 3 0 0 0 1 -2 3
X3 — X5 = 4 0 0 1 0 -1 4
X3 — x5= 4|10 [0 O 1 0 -1 4
A 1
N x1+ 2x + 3x5 = 2' 1 2 0 0 3i 2
X4 —2x5= 3 0 O 0 1 -2 i 3
' . X3 — X5 = 4 0 0 1 0 -1 i 4
0= 0| 0 0 0 0 0! C

There are no variables left in the fourth equation, and we are almost d
system now satisfies properties P1 and P2, but not P3: The leading variabl

I3
i
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x4 appear in reversed order. This is not a big problem, though: We can rearrange the
order of the equations, swapping equations (II) and (III).

!x1+2x2 +3x5= 2 1 2 0 0 31 2
| X3 — xs= 4 00 1 0 -1} 4
I x4 —2x5 = 3 00 0 1 -2! 3
. 0= 0 00 0 0 0 0

Our system now satisfies properties P1, P2, and P3. We can solve each equation for
its leading variable: '

X1 =2 — 2xp — 3x5
x3=4 + x5/
x4 =23 + 2xs5

If we let x, = ¢ and x5 = r, then the infinitely many solutions are of the form

x1 2 =2t -3r
X2 t

x3| =14 —+r
X4 3 +2r

Let us summarize.

Solving a system of linear equations "
We proceed from equation to equation, from top to bottom. |
Suppose we get to the ith equation, with leading variable x; and leading [

F

!

(nonzero) coefficient ¢, so that the equation will be of the form cx; + ... = b.
Divide the ith equation by c to bring it into the form x; + ... = b/c.
Eliminate x; from all the other equations, above and below the ith equation,

by subtracting suitable multiples of the ith equation. [
Now proceed to the next equation. [
If an equation zero = nonzero emerges in this process, then the system is |

inconsistent, and there are no solutions.

| If you get through the system without encountering an inconsistency, then

| rearrange the equations so that the leading variables appear in the “natural order”

(see property P3; this can be accomplished by a sequence of swaps of equations).
Solve each equation for its leading variable. You may freely choose values

for the nonleading variables; the leading variables are then determined by these

choices. r

Take another look at the preceding example to see how this algorithm works in
practice.

This process can be performed on the augmented matrix. As you do so, just
imagine the linear system lurking behind the matrix.

In the preceding example, we reduced the augmented matrix

e 2 4 -2 2 442 1200 32
1 2 -1 2 014 |00 1 0 —1.4
M=13 6 21 91| © F=loo0o01 23
5 10 -4 5 919 0 00 0 030
We say that the final matrix E is the reduced row-echelon form of M, written E =

rref(M).
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You can use computational software (Mathematica, MATLAB, Maple, ¢
the computational search engine Wolfram Alpha to find the reduced row-e

form of a given matrix.

Reduced row-echelon form
A matrix is said to be in reduced row-echelon form (rref) if it satisfies all ¢

following conditions:

a. If a row has nonzero entries, then the first nonzero entry is a 1, calle
leading 1 (or pivot) in this row.

b. If a column contains a leading 1, then all the other entries in that cc
are 0.

c. Tf a row contains a leading 1, then each row above it contains a lead
further to the left.

l£ondition c implies that rows of 0’s, if any, appear at the bottom of the m:
Conditions a, b, and c defining the reduced row-echelon form correspor
conditions P1, P2, and P3 that we imposed on the system.
Note that the leading 1’s in the n%?trix
>

zw T
@200 312 K2y £3E7
loo@o 144 2t =
“loo0oo0@ 23 Ww2t=73
0000 010 X= 2
7 =

correspond to the leading variables in the reduced system,
+ 2x 4+ 3x5 = 2
T ® - omm 4
T —L - ZX5 = 3 \
Here we draw the staircase formed by the leading variables. This is where

echelon form comes from. According to Webster, an echelon is a formati¢

series of steps.”
The operations we perform when bringing a matrix into reduced rov

form are referred to as elementary row operations. Let’s review the thre:
such operations.

Types of elementary row operations
« Divide a row by a nonzero scalar.
« Subtract a multiple of a row from another row.

e Swap two TOWS.

r Consider the following system:
x; — 3x2 — Sx4= -7
3x1 - 12)62 — 2JC3 -— 27x4 =-33
—2x; 4+ 10xp + 2x3 + 24x4 = 291"

—x1 + 6xy + x3 + 14x4 = 17
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The augmented matrix is

1 -3 0 -5 -7
3 12 -2 =27 {-33
-2 10 2 241} 29
1 6 1 141 17

The reduced row-echelon form for this matrix is

100 1}0
01 0 210
0 01 310
000 0!1

(We leave it to you to perform the elimination.)

Since the last row of the echelon form represents the equation 0 = 1, the system
is inconsistent.

This method of solving linear systems is sometimes referred to as Gauss—
Jordan elimination, after the German mathematician Carl Friedrich Gauss (1777
1855; see Figure 4), perhaps the greatest mathematician of modern times, and the
German engineer Wilhelm Jordan (1844-1899). Gauss himself called the method
eliminatio vulgaris. Recall that the Chinese were using this method 2,000 years ago.
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Figure 4 Carl Friedrich Gauss appears on an old German 10-mark note. (In fact, this is the
mirror image of a well-known portrait of Gauss.?)

How Gauss developed this method is noteworthy. On January 1, 1801, the
Sicilian astronomer Giuseppe Piazzi (1746-1826) discovered a planet, which he
named Ceres, in honor of the patron goddess of Sicily. Today, Ceres is called a
dwarf planet, because it is only about 1,000 kilometers in diameter. Piazzi was able
to observe Ceres for 40 nights, but then he lost track of it. Gauss, however, at the
age of 24, succeeded in calculating the orbit of Ceres, even though the task seemed
hopeless on the basis of a few observations. His computations were so accurate
that the German astronomer W. Olbers (1758—1840) located the planet on Decem-
ber 31, 1801. In the course of his computations, Gauss had to solve systems of 17
linear equations.® In dealing with this problem, Gauss also used the method of least

8Reproduced by permission of the German Bundesbank.

9For the mathematical details, see D. Teets and K. Whitehead, “The Discovery of Ceres: How Gauss
Became Famous,” Mathematics Magazine, 72, 2 (April 1999): 83-93.
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squares, which he had developed around 1794. See Section 5.4. Since Gaus:
refused to reveal the methods that led to this amazing accomplishment, sor
accused him of sorcery. Gauss later described his methods of orbit comput
his book Theoria Motus Corporum Coelestium (1809).

The method of solving a linear system by Gauss—Jordan elimination i
an algorithm."% An algorithm can be defined as “a finite procedure, written ir
symbolic vocabulary, governed by precise instructions, moving in discrete &
2,3, ..., whose execution requires no insight, cleverness, intuition, intellig
perspicuity, and that sooner or later comes to an end” (David Berlinski, The
of the Algorithm: The Idea That Rules the World, Harcourt Inc., 2000).

Gauss—Jordan elimination is well suited for solving linear systems on
puter, at least in principle. In practice, however, some tricky problems as:
with roundoff errors can occur.

Numerical analysts tell us that we can reduce the proliferation of r
errors by modifying Gauss—Jordan elimination, employing more sophistic
duction techniques.

In modifying Gauss—Jordan elimination, an interesting question arise
transform a matrix A into a matrix B by a sequence of elementary row op
and if B is in reduced row-echelon form, is it necessarily true that B = 1
Fortunately (and perhaps surprisingly), this is indeed the case.

In this text, we will not utilize this fact, so there is no need to pre
somewhat technical proof. If you feel ambitious, try to work out the proof
after studying Chapter 3. See Exercises 3.3.86 through 3.3.89.

| 10 The word algorithm is derived from the name of the mathematician al-Khowarizmi, who i

! the term algebra into mathematics (see page 1).

| EXERCISES 1.2

| GOAL Use Gauss-Jordan elimination to solve linear ‘xl + 2x3 2x4 + 3x5 = 0|
systems. Do simple problems using paper and pencil, and 7 x3+3x4 +2x5=0
use technology to solve more complicated problems. : ‘ x3+4xg— x5=0
In Exercises 1 through 12, find all solutions of the equa- x5 =0
tions with paper and pencil using Gauss-Jordan elimina- 8. Solve this system for the variables x;, x2, x2
tion. Show all your work. xs.
x4+ y—2z=5 3x+4y— z=8 .
1. 2x+3y+4z=2‘ 2 l6x +8y—27=3 xz*i;jiiﬁ:g[
x+ y=1 _
3.x+2y+3z2=4 4. |2x— y=5 9. |x; +2x x412x5:§6:3
3x4+4y=2 - M 2 *5 6=
x1 4+ 2x3 + 2x3 — x5+ x6=2
X +;3+x4zg ,\___| 4x1+3x2-f-2x3— x4= 4
5. X + x; 3 -0 f"10 l Sxi +4dxp +3x3— x4= 4
e T oxg =0 - '——2x1—2x2— x3+2x4=-3
. 1 4 T 11xg + 6xp +4x3 + xg= 11
¥ — =
6 a1 = Tx X 1_2? — g x1 + 2x3 +4x4 = —8
' Pt w1 11 @ —3x - = 0
4 5= " 3% +4x; —6x3+8x4= 0

— X2+ 3x3 +4x4 =12




ad

| 2xq — 3x3 +Txs+ Tx6=0
—2x1 + x2 + 6x3 — 6x5 — 12x6 =0

12. xp — 3x3 + x5+ Sxg=0
— 2xp +x44+ x5+ x=0

2x1 + x3 —3x3 + 8xs + 7xg=0
Solve the linear systems in Exercises 13 through 17. You
may use technology.

3x + 11y +19z2= -2
13. | 7x+23y+39z= 10
—4x — 3y— 2z= 6

3x+ 6y+14z=22
14. [7x + 14y + 30z = 46
4x + 8y+ 7z= 6

3x+5y+ 3z=25
15. | 7x +9y + 192 =65
—4x +5y+11z= 5

3x1 + 6x3 + 9x3 + 5x4 4+ 25x5 = 53
16. | 7x7 + 14xs + 21x3 + 9x4 + 53x5 = 105
—4x1 — 8x3 — 12x3 + 5x4 — 10x5 = 11

|I 2x1 + 4x3 + 3x3 + S5x4 + 6x5 = 37|

| 4%y + 8x9 + Txz + 5x4 + 2x5 = 74|

17. |—2x31 — 4xp +3x3 +4x4 — 5x5 =20
x1 + 2x0 4+ 2x3 — x4+ 2x5 =26

5x1 — 10x2 + 4x3 + 6xq + 4x5 =24

18. Determine which of the matrices below are in reduced
row-echelon form:

1 2 0

20
00130 0120 3
a. b. [0 0 0 1 4
001 40 0000 0
0 0 0 0 1
1 2 0 3
¢ [0 0 00 d {0 1 2 3 4]
0 0 1 2

19. Find all 4 x 1 matrices in reduced row-echelon form.

@ For which values of a, b, ¢, d, and e is the following
matrix in reduced row-echelon form?

0 a 2 1 b
A=]0 0 0 ¢ d
00 ¢ 00

21. For which values of a, b, c, d, and e is the following
matrix in reduced row-echelon form?

0" -2
d 3
1

1
A=10
0 1

a O8
oo o
(=R

22. We say that two n x m matrices in reduced roweechelon
form are of the same type if they contain the same num-
ber of leading 1’s in the same positions. For example,

_h—__
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23.

2.
K

26.
27.

28.

29.

30.

31.

32.

33.

D20 @D 3 0
[ o o0o® ™ o o0@
are of the same type. How many types of 2 x 2 matrices
in reduced row-echelon form are there?

How many types of 3 x 2 matrices in reduced row-
echelon form are there? See Exercise 22.

How many types of 2 x 3 matrices in reduced row-
echelon form are there? See Exercise 22.

Suppose you apply Gauss—Jordan elimination to a ma-
trix. Explain how you can be sure that the resulting
matrix is in reduced row-echelon form.

Suppose matrix A is transformed into matrix B by
means of an elementary row operation. Is there an
elementary row operation that transforms B into A?
Explain.

Suppose matrix A is transformed into matrix B by a
sequence of elementary row operations. Is there a se-
quence of elementary row operations that transforms B
into A? Explain your answer. See Exercise 26.

Consider an n x m matrix A. Can you transform rref(A)
into A by a sequence of elementary row operations? See
Exercise 27.

Is there a sequence of elementary row operations that
transforms
1 2 3 1 00
4 5 6| into |0 1 0]?
7 8 9 0 00
Explain.

Suppose you subtract a multiple of an equation in a sys-
tem from another equation in the system. Explain why

the two systems (before and after this operation) have

the same solutions.

Balancing a chemical reaction. Consider the chemical
réaction
a NO; + b H;O — ¢ HNO; + d HNOs3,

where a, b, ¢, and d are unknown positive integers. The
reaction must be balanced; that is, the number of atoms
of each element must be the same before and after the
reaction. For example, because the number of oxygen
atoms must remain the same,

2a +b=2c+3d.

While there are many possible values for 4, b, ¢, and d
that balance the reaction, it is customary to use the smal-
lest possible positive integers. Balance this reaction.

Find the polynomial of degree 3 [a polynomial of the
form f(z) = a + bt + ct? + dr>] whose graph goes
through the points (0, 1), (1, 0), (—1,0), and (2, —15).
Sketch the graph of this cubic.

Find the polynomial of degree 4 whose graph goes
through the points (1, 1), (2, —1), (3, —59), (-1,5),
and (—2, —29). Graph this polynomial.
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34.

35.
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Cubic splines. Suppose you arc in charge of the design
of a roller coaster ride. This simple ride will not make
any left or right turns; that is, the track lies in a verti-
cal plane. The accompanying figure shows. the ride as
viewed from the side. The points (a;, b;) are given to
you, and your job is to connect the dots in a reasonably
smooth way. Let ;41 > a;,fori =0,...,n— L.

One method often employed in such design problems is
the technique of cubic splines. We choose f; (¢), a poly-
nomial of degree < 3, to define the shape of the ride
between (a;_1, b;—1) and (@;, by), fori =1, ..., n.

@12, 0i40)

@i-1.5:-1) \
£i®)

Obviously, it is required that fi(a;) = b; and
fitai—1) = bj—1, fori = 1,...,n. To guarantee a
smooth ride at the points (g;, b;), we want the first
and second derivatives of f; and fj4] to agree at these
points:

fla) = fii (@)
@) = £y @),
Explain the practical significance of these conditions.

Explain why, for the convenience of the riders, it is also
required that

and
fori=1,...,n—1.

fitag) = fy(an) = 0.

Show that satisfying all these conditions amounts to
solving a system of linear equations. How many vari-
ables are in this system? How many equations? (Note:
It can be shown that this system has a unique solution.)

Find the polynomial f(t) of degree 3 such that
f=1,f@ =5, f(1)=2and f'(2) =9, where
F'(2) is the derivative of f(¢). Graph this polynomial.

36. The dot product of two vectors

X1 Y1
- X2 . Y2
x = and y=

Xn Yn

37.

38.

39.

40.

in R” is defined by
X-y=xy1+x2y2+ -+ Xnyn.

Note that the dot product of two vectors is
We say that the vectors ¥ and y are perpen
i-y=0.
Find atl vectors in R3 perpendicular to
1
3
-1

Draw a sketch.

Find all vectors in R* that are perpendicular tc
vectors

e I e
~] \O \©

1
2
1 3 i
4
See Exercise 36.

Find all solutions x1, xp, x3 of the equation

b = x101 + X202 + x303,

where
-8 1 2
b= | a= | = |2 0=
- 2 » V]l — 7 ) 2_ 8 ? 3—
15 5 3

For some background on this exercise,
cise 1.1.24.

Consider an economy with three industi
I3. What outputs x1, x2, x3 should they prod
isfy both consumer demand and interindustry
The demands put on the three industries are
the accompanying figure.

0.1x;
Industry I; [™ 0 Industry
(output x;) 2%, {output a
0'%1\\0.3353 0.4x3 .-_' /‘ 05%,
Industry 13
(output x3)
320 150 90
Consumer

If we consider more than three industries ir
output model, it is cumbersome to repres
demands in a diagram as in Exercise 3§
we have the industries I1,1o,...,L,, wi
X1, %2, ..., Xn. The output vector is
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41.

X1
X2

Xn

The consumer demand vector is
b1
by

o
I

by

where b; is the consumer demand on industry I;. The
demand vector for industry I is

where a;; is the demand industry 1; puts on industry I,

for each $1 of output industry I; produces. For exam-

ple, az2 = 0.5 means that industry I needs 50¢ worth

of products from industry I3 for each $1 worth of goods

T, produces. The coefficient @;; need not be 0: Produc-

ing a product may require goods or services from the

same industry.

a. Find the four demand vectors for the economy in
Exercise 39.

b. What is the meaning in economic terms of x;¥;?

¢. What is the meaning in _'economic terms of
X101 + xoU2 + - -+ + xpUp + b?

d. What is the meaning in economic terms of the equa-
tion

X101 4 X0y + - + XUy + b= X7

Consider the economy of Israel in 1958.!1 The three
industries considered here are

I; : agriculture,
I; : manufacturing,
I3: energy.

Outputs and demands are measured in millions of
Israeli pounds, the currency of Israel at that time. We
are told that

[13.2 [0.293
b= |176{, o = |0.014],
| 1.8 0.044
[0 [0
%, = [0207], ©3=[0.017].
0.01 0.216

A4

—_—

11 -
W. Leontief, Input-Output Economics, Oxford University Press,

1966

-
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42.

43.

a. Why do the first components of 3 and 73 equal 0?

b. Find the outputs xj,x7,x3 required to satisfy
demand.

Consider some particles in the plane with position vec-

tors 71, 72, .. ., 'y and masses my, ma, ..., My,
my
[ )
)
my
[ ]
[ ]
L
Fn ° M,

The position vector of the center of mass of this system
is

- 1 o - =
Fem = M(mlrl +mary + - mary),

where M =my+my +--- +my.

Consider the triangular plate shown in the accom-
panying sketch. How must a total mass of 1 kg be
distributed among the three vertices of the plate so that

2} ; that is,

the plate can be supported at the point [2

-

Fem = [;] ? Assume that the mass of the plate itself is

negligible.

The momentum P of a system of r particles in space
with masses my, my, . .., my, and velocities 91, 2, . . .,
Uy is defined as

P =miv1 +movy + -+ mpiy.

Now consider two elementary particles with velocities

1 4
1= |1 and Uy = | 7
1 10
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44.

45,
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The particles collide. After the collision, their respec-
tive velocities are observed to be

4 2
w = |7 and i = |3
4 8

Assume that the momentum of the system is conserved
throughout the collision. What does this experiment
tell you about the masses of the two particles? See the
accompanying figure.

Particle 1

Particle 2

Collisi/‘:n\

The accompanying skeich represents a maze of one-
way streets in a city in the United States. The traffic
volume through certain blocks during an bour has been
measured. Suppose that the vehicles leaving the area
during this hour were exactly the same as those enter-

ing it.
JFK Street
4

Dunster Street

Mt. Auburn Street

‘Winthrop Street

What can you say about the traffic volume at the
four locations indicated by a question mark? Can you
figure out exactly how much traffic there was on each
block? If not, describe one possible scenario. For each
of the four locations, find the highest and the lowest
possible traffic volume.

Let S(z) be the length of the rth day of the year 2013
in Mumbai (formerly known as Bombay), India (mea-
sured in hours, from sunrise to sunset). We are given
the following values of S(¢):

.t SO
47 115
74 12

273 12

46.

47.

48.

49.

50.

51.

For example, $(47) = 11.5 means that
from sunrise to sunset on February 16is 111
30 minutes. For locations close to the equator,
tion S(¢) is well approximated by a trigonome
tion of the form

2nt . [ 2mt
S(t) =a+ bcos (365) + ¢ sin (365
(The period is 365 days, or 1 year.) Find this ap
tion for Mumbai, and graph your solution. 2
to this model, how long is the longest day of t]
Mumbai? -
Kyle is getting some flowers for Olivia, his
Being of a precise analytical mind, he plans
exactly $24 on a bunch of exactly two doze:
At the flower market they have lilies ($3 ea
($2 each), and daisies ($0.50 each). Kyle k
Olivia loves lilies; what is he to do?

Consider the equations
x+2y+ 3z=4
x+ky + 47 =6/,
x+2y+ ¢k+2)z2=6
where k is an arbitrary constant.

a. For which values of the constant k does tt
have a unique solution?

b. When is there no solution?
¢. When are there infinitely many solutions?

Consider the equations

y+2kz=0
x+2y+ 6z=2|,
kx + 2z=1

where k is an arbitrary constant.

a. For which values of the constant & does tl
have a unique solution?

b. When is there no solution?

¢. When are there infinitely many solutions?

a. Find all solutions xi,xp,x3,x4 of t
x2 = 5(x1 +x3), 53 = 02 + xa).

b. In part (a), is there a solution with x;
x4 =137

For an arbitrary positive integer n > 3, find al
X1, X2, X3, ..., Xp of the simultaneous equat
FGatx3), x3 = Loo+xs), .. 1 = 30
Note that we are asked to solve the simultam
tions xx = %(xk_l + xp41), fork=2,3,...

Consider the system

2+ y =C
3y+ z=Cy,
x +4z=C

where C is a constant. Find the smallest posil
C such that x, y, and z are all integers.
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52. Find all the polynomials f(¢) of degre<:25 3 such that
f@ =3 f1) =22 =0and [y f(t)dt = 4.
(If you have studied Simpson’s rule in calculus, explain
the result.)

Exercises 53 through 62 are concerned with conics. A
conic is a curve in R? that can be described by an equation
of the form f(x,y)=c1+cox+c3y+ c4gc~2 +csxy +
cey? = 0, where at least one of the coefficients c; is
nonzero. Examples are circles, ellipses, hyperbolas, and
parabolas. If k is any nonzero constant, then the equa-
tions f(x,y) =0 and kf(x, y) = 0 describe the same
conic. For example, the equation —4 + x% + y? = 0 and
—~12 + 3x2 + 3y? = 0 both describe the circle of radius 2
centered at the origin. In Exercises 53 through 62, find all
the conics through the given points. If there is a unique
conic, make a rough sketch. If there are infinitely many
conics, sketch two of them.

53. (0,0), (1,0), (2,0), (0, 1), and (0, 2).
(0, 0), 2,0), (0,2), (2,2),and (1,3).

55. (0,0), (1,0), (2,0), (3,0),and (1, 1).

56. (0,0), (1,1), (2,2), (3,3),and (1,0).

57. (0,0), (1,0), (0,1),and (1, 1).

58. (0,0), (1,0), (0,1),and (1, —1).

59. (5,0), (1,2), (2,1), (8,1),and (2,9).

60. (1,0), (2,0), (2,2), (5,2),and (5, 6).

61. (0,0), (1,0), (2,0), (0, 1), (0,2), and (1, 1).
62. (0,0), (2,0), 0,2), (2,2), (1,3), and (4, 1).

63. Students are buying books for the new semester. Eddie
buys the environmental statistics book and the set the-
ory book for $178. Leah, who is buying books for her-
self and her friend, spends $319 on two environmental
statistics books, one set theory book, and one educa-
tional psychology book. Mehmet buys the educational
psychology book and the set theory book for $147 in
total. How much does each book cost?

64. Students are buying books for the new semester.
Brigitte buys the German grammar book and the Ger-
man novel, Die Leiden des jungen Werther, for €64 in
total. Claude spends €98 on the linear algebra text and
the German grammar book, while Denise buys the lin-
ear algebra text and Werther, for €76. How much does
each of the three books cost?

65. At the beginning of a political science class at a large
university, the students were asked which term, liberal
or conservative, best described their political views.
They were asked the same question at the end of the
course, to see what effect the class discussions had
on their views. Of those that characterized themselves
as “liberal” initially, 30% held conservative Views at
the end. Of those who were conservative initially, 40%

e
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moved to the liberal camp. It turned out that there were
just as many students with conservative views at the end
as there had been liberal students at the beginning. Out
of the 260 students in the class, how many held liberal
and conservative views at the beginning of the course
and at the end? (No students joined or dropped the class
between the surveys, and they all participated in both
surveys.)

66. At the beginning of a semester, 55 students have signed
up for Linear Algebra; the course is offered in two
sections that are taught at different times. Because of
scheduling conflicts and personal preferences, 20% of
the students in Section A switch to Section B in the
first few weeks of class, while 30% of the students in
Section B switch to A, resulting in a net loss of 4 stu-
dents for Section B. How large were the two sections
at the beginning of the semester? No students dropped
Linear Algebra (why would they?) or joined the course
late.

Historical Problems

67. Five cows and two sheep together cost 10 liang'? of
silver. Two cows and five sheep together cost eight
liang of silver. What is the cost of a cow and a sheep,
respectively? (Nine Chapters,'> Chapter 8, Problem 7)

68. If you sell two cows and five sheep and you buy 13 pigs,
you gain 1,000 coins. If you sell three cows and three
pigs and buy nine sheep, you break even. If you sell
six sheep and eight pigs and you buy five cows, you
lose 600 coins. What is the price of a cow, a sheep,
and a pig, respectively? (Nine Chapters, Chapter 8,
Problem 8)

69. You place five sparrows on one of the pans of a balance
and six swallows on the other pan; it turns out that the
sparrows are heavier. But if you exchange one sparrow
and one swallow, the weights are exactly balanced. All
the birds together weigh 1 jin. What is the weight of
a sparrow and a swallow, respectively? [Give the an-
swer in liang, with 1 jin = 16 liang.] (Nine Chapters,
Chapter 8, Problem 9)

70. Consider the task of pulling a weight of 40 dan!* up a
hill; we have one military horse, two ordinary horses,
and three weak horses at our disposal to get the job
done. It turns out that the military horse and one of the
ordinary horses, pulling together, are barely able to pull

2a liang was about 16 grams at the time of the Han Dynasty.

13See page 1; we present some of the problems from the Nine
Chapters on the Mathematical Art in a free translation, with
some additional explanations, since the scenarios discussed in
a few of these problems are rather unfamiliar to the modern
reader.

141 dan = 120 jin = 1,920 liang. Thus, a dan was about
30 kilograms at that time.
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71.

72.

73.

74.
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the weight (but they could not pull any more). Likewise,
the two ordinary horses together with one weak horse
are just able to do the job, as are the three weak horses
together with the military horse. How much weight can
each of the horses pull alone? (Nine Chapters, Chap-
ter 8, Problem 12)

Five households share a deep well for their water sup-
ply. Each household owns a few ropes of a certain
iength, which varies only from household to houschold.
The five households, A, B, C, D, and E, own 2, 3, 4,
5, and 6 ropes, respectively. Even when tying all their
ropes together, none of the households alone is able to
reach the water, but A’s two ropes together with one
of B’s ropes just reach the water. Likewise, B’s three
ropes with one of C’s ropes, C’s four ropes with one of
D’s ropes, D’s five ropes with one of E’s ropes, and E’s
six ropes with one of A’s ropes all just reach the water.
How long are the ropes of the various households, and
how deep is the well?

Commentary: As stated, this problem leads to a system
of five linear equations in six variables; with the given
information, we are unable to determine the depth of
the well. The Nine Chapters gives one particular solu-
tion, where the depth of the well is 7 zhang,'> 2 chi, 1
cun, or 721 cun (since 1 zhang = 10 chi and 1 chi =
10 cun). Using this particular value for the depth of the
well, find the lengths of the various ropes.

“A rooster is worth five coins, a hen three coins, and
3 chicks one coin. With 100 coins we buy 100 of them.
How many roosters, hens, and chicks can we buy?”
(From the Mathematical Manual by Zhang Qiujian,
Chapter 3, Problem 38; 5th century A.D.)
Commentary: This famous Hundred Fowl Problem has
reappeared in countless variations in Indian, Arabic,
and European texts (see Exercises 73 through 76); it has
remained popular to this day. See Exercise 46 of this
section.

Pigeons are sold at the rate of 5 for 3 panas, sarasabirds
at the rate of 7 for 5 panas, swans at the rate of 9 for 7
panas, and peacocks at the rate of 3 for 9 panas. A man
was ordered to bring 100 birds for 100 panas for the
amusement of the Prince. How much does he pay for
each of the various kinds of birds be buys? (From the
Ganita-Sara-Sangraha by Mahavira, India; 9th century
A.D.) Find one solution to this problem.

A duck costs four coins, five sparrows cost one coin,
and a rooster costs one coin. Someone purchases
100 birds for 100 coins. How many birds of each kind
can he buy? (From the Key to Arithmetic by Al-Kashi;
15th century)

151 zhang was about 2.3 meters at that time.

75. “A certain person buys sheep, goats, and ho

number of 100, for 100 crowns; the sheep
% a crown a-piece; the goats, 1% crown; anc
3% crowns. How many had he of each?” (
Elements of Algebra by Leonhard Euler, 177(

76. A gentleman runs a household of 100 peop.

ders that they be given 100 measures of gra
rects that each man should receive three meas
woman two measures, and each child half a
How many men, women, and children are th
household? We are told that there is at least
one woman, and one child. (From the Prc
Quickening a Young Mind by Alcuin [c. 732
Abbot of St. Martins at Tours, Alcuin was a

tutor to Charlemagne and his family at Aache

77. A dying father gave to his sons 30 barrels, of

were full of wine, 10 were half-full, and the le
empty. Divide the wine and flasks so that the
equal division among the three sons of botk
barrels. Find all the solutions of this probl
Alcuin)

78. Make me a crown weighing 60 minae from

of gold, bronze, tin, and wrought iron. Le
and bronze together form two-thirds of the 1
gold and tin together three-fourths, and the
iron three-fifths. Tell me how much gold, t
and iron you must use. (From the Greek An
Metrodorus, 6th century A.D.)

. \Three merchants find a purse lying in the

L “ merchant says, “If T keep the purse, I will

as much money as the two of you togett
me the purse and I will have three time
as the two of you together,” said the se
chant. The third merchant said, “T will be
ter off than either of you if I keep the p
have five times as much as the two of yo
If there are 60 coins (of equal value) in
how much money does each merchant h:
Mahavira)

80. 3 cows graze 1 field bare in 2 days,

7 cows graze 4 fields bare in 4 days, and

3 cows graze 2 fields bare in 5 days.

It is assumed that each field initially provid
amount, x, of grass; that the daily growil
fields remains constant; and that all the ¢
same amount, z, each day. (Quantities x, )
measured by weight.) Find all the solutions
lem. (This is a special case of a problem d
Isaac Newton in his Arithmetica Universali

S ———— " i o Liss ok



