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Six Ways to Sum a Series 

Dan Kalman 

Dan Kalman This fall I have joined the mathematics faculty at 
American University, Washington D.C. Prior to that I spent 8 
years at the Aerospace Corporation in Los Angeles, where I 
worked on simulations of space systems and kept in touch with 
mathematics through the programs and publications of the 
MAA. At a national meeting I heard the presentation by Zagier 
referred to in the article. Convinced that this ingenious proof 
should be more widely known, I presented it at a meeting of the 
Southem California MAA section. Some enthusiastic members 
of the audience then shared their favorite proofs and references 
with me. These led to more articles and proofs, and brought me 
into contact with a realm of mathematics I never guessed 
existed. This paper is the result. 

The concept of an infinite sum is mysterious and intriguing. How can you add up 
an infinite number of terms? Yet, in some contexts, we are led to the contempla- 
tion of an infinite sum quite naturally. For example, consider the calculation of a 
decimal expansion for 1/3. The long division algorithm generates an endlessly 
repeating sequence of steps, each of which adds one more 3 to the decimal 

expansion. We imagine the answer therefore to be an endless string of 3's, which 
we write 0.333... . In essence we are defining the decimal expansion of 1/3 as an 
infinite sum 

1/3 = 0.3 + 0.03 + 0.003 + 0.0003 + ? ? ? . 

For another example, in a modification of Zeno's paradox, imagine partitioning a 

square of side 1 as follows: first draw a diagonal line that cuts the square into two 

triangular halves, then cut one of the halves in half, then cut one of those halves in 

half, and so on ad infinitum. (See Figure 1.) Then the area of the square is the sum 
of the areas of all the pieces, leading to another infinite sum 

1 I + I + I +J_ + 

Figure 1 
Partitioned unit square. 
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Although these examples illustrate how naturally we are led to the concept of an 
infinite sum, the subject immediately presents difficult problems. It is easy to 
describe an infinite series of terms, much more difficult to determine the sum of 
the series. In this paper I will discuss a single infinite sum, namely, the sum of the 

squares of the reciprocals of the positive integers. In 1734 Leonhard Euler was the 
first to determine an exact value for this sum, which had been considered actively 
for at least 40 years. By today's standards, Euler's proof would be considered 

unacceptable, but there is no doubt that his result is correct. Logically correct 

proofs are now known, and indeed, there are many different proofs that use 
methods from seemingly unrelated areas of mathematics. It is my purpose here to 
review several of these proofs and a little bit of the mathematics and history 
associated with the sum. 

Background 

It is clear that when an infinite number of positive quantities are added, the result 
will be infinitely large unless the quantities diminish in size to zero. One of the 

simplest infinite sums that has this property is the harmonic series, 

i +I + 1 + I + I+ ... 
i-r2-r3-r4-r5-r 

It may come as a surprise that this sum becomes infinitely large (that is, it 

diverges). To see this, we ignore the first term of the sum and group the remaining 
terms in a special way: the first group has 1 term, the next group has 2 terms, the 
next group 4 terms, the next 8 terms, and so on. The first several groups are 

depicted below: 

2 

3 ̂  4 S 4 T 4 

9 ̂  10 ̂  11 ̂  12 ̂  13 ̂  14 ̂  15 ̂  16 ̂  16 ̂  16 ̂  16 ̂  16 ̂  16 ̂  16 ̂  16 ̂  16 * 

The inequalities are derived by observing that in each group the last term is the 

smallest, so that repeatedly adding the last term results in a smaller sum than 

adding the actual terms in the group. Now notice that in each case, the right-hand 
side of the inequality is equal to 1/2. Thus, when the terms are grouped in this 

way, we see that the sum is larger than adding an infinite number of 1/2's, which 

is, of course, infinite. 
We may conclude that although the terms of the harmonic series dwindle away 

to 0, they don't do it fast enough to produce a finite sum. On the other hand, we 
have already seen that adding all the powers of 1/2 does produce a finite sum. 
That is, 

I + I + I +J_ + ... = i 
2^4^8^16^ l' 

(More generally, for any \z\ < 1, the geometric series 1 + z + z2 + z3 + ??? adds up 
1/(1?z)). Apparently, these terms get small so fast that adding an infinite 
number of them still produces a finite result. It is natural to wonder what happens 
for a sum that falls between these two examples, with terms that decrease more 

rapidly than the harmonic series, but not so rapidly as the geometric series. An 
obvious example comes readily to hand, the sum of the squares of the reciprocals 
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of the integers: l + i + i + ^+ 
* * * . For reference, we will call this Euler's series. 

Does the sum get infinitely large? The answer is no, which can be seen as follows. 
We are interested in the sum 

1111 

This is evidently less than the sum 

1111 
1 +-+-+-+-+ ??? . 

1-2 2-3 3-4 4-5 

Now rewrite each fraction as a difference of two fractions. That is, 

1 1 1 

1-2 1 2 

1 1 1 

2-3 2 3 

1 1 1 

3-4 3 4 

1 1 1 

4-5 4 5 

Substitute these values into the sum and we obtain 

1 ^ 1 2^2 3^3 4^4 5 ̂  

If we add all the terms of this last sum, the result is 2. So we may conclude at least 
that the sum we started with, 1+^+1+^+ 

? ? ? , is less than 2. This implies that 
the terms actually add up to some definite number. But which one? 

Before proceeding, let us take another look at the two arguments advanced 

above, the first for the divergence of the harmonic series, and the second for the 

convergence of Euler's series. It might appear at first glance that we have indulged 
in some mathematical sleight of hand. The two arguments are of such different 
flavors. It seems unfair to apply different methods to the two series and arrive at 
different conclusions, as if the conclusion is a consequence of the method rather 
than an inherent property of the series. If we applied the divergence argument to 
Euler's series, might we then arrive at the conclusion that it diverges? This is an 
instructive exercise, and the reader is encouraged to undertake it. 

We return to the question, what is the sum of Euler's series? Of course, you can 
use a calculator to estimate the sum. Adding up 10 terms gives 1.55, but that 
doesn't tell us much. The correct two decimal approximation is 1.64, and is not 
reached until after more than 200 terms. And even then it is not at all obvious that 
the these first two decimal places are correct. Compare the case of the harmonic 
series which we know has an infinite sum. After 200 terms of that series, the total 
is still less than 6. For these reasons, direct calculation is not very helpful. 

It is possible to make accurate estimates of the sum by using methods other than 
direct calculation. On a very elementary level, by comparing a single term 1/n2 
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with f" 
+ 

ldx/x2, the methods of calculus can be used to show that 

11 11 
1 + - + -+ ??? +?7 + 

4 9 n2 w + 1 

is a much better approximation to the full total than just using the first n or n + 1 
terms. In fact, with this approximation, the error must be less than l/n(n + 1). 

Taking n = 14, for example, the approximation will be accurate to two decimal 

places. This is a big improvement on adding up 200 terms, and not knowing even 
then if the first two decimals are correct. 

Calculating the first few decimal places of the sum of Euler's series was a 

problem of some interest in Euler's time. He himself worked on the problem, 
obtaining approximation formulas that allowed him to determine the first several 
decimal places, in the same way that the approximation and error estimate were 
used in the preceding paragraph. Later, Euler derived an exact value for the sum. 
Erdos and Dudley [5] describe Euler's contribution this way: 

In 1731 he obtained the sum accurate to 6 decimal places, in 1733 to 20, 
and in 1734 to infinitely many... . 

A more detailed history of this problem, and of Euler's contribution are presented 
in [4]. Briefly, Oresme showed the divergence of the harmonic series in the 14th 

century. In 1650, Mengali asked whether Euler's series converges. In 1655 John 
Wallis worked on the problem, as did John Bernoulli in 1691. Thus, when Euler 

published his value for the sum in 1734, the problem had already been worked on 

by formidable mathematicians for several decades. By an ingenious application of 
formal algebraic methods, Euler derived the value of the sum to be tt2/6. 

Euler's Proof 

As mentioned earlier, Euler's proof is not considered valid today. Nevertheless, it 
is quite interesting, and worth reviewing here. Actually, Euler gave several proofs 
over a number of years, including two in the paper of 1734 [6]. What we present 
here is essentially the same as the argument given in sections 16 and 17 of that 

paper, and is in the same form as in [8] and [18]. The basic idea is to obtain a 

power series expansion for a function whose roots are multiples of the perfect 
squares 1, 4, 9, etc. Then we apply a property of polynomials to obtain the sum of 
the reciprocals of the roots. The other derivation given in Euler's 1734 paper is 
discussed in [4, section 4] and [10, pp. 308-309]. 

Here is the argument: The sine function can be represented as a power series 

x3 x5 x1 
sin x = x-1-h ? ? ? 

3-2 5-4-3-2 7-6-5-4-3-2 

which we think of as an infinite polynomial. Divide both sides of this equation by x 
and we obtain an infinite polynomial with only even powers of x; replace x with yfx 
and the result is 

sin yfx x x2 x3 
1-+-+ ??? . 

y[x~ 3-2 5-4-3-2 7-6-5-4-3-2 

We will call this function /. The roots of / are the numbers 7i2, Ait2, 9-n-2, 
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16tt2, .... Note that 0 is not a root, because there the left-hand side is undefined, 
while the right-hand side is clearly 1. 

Now Euler knew that adding up the reciprocals of all the roots of a polynomial 
results in the negative of the ratio of the linear coefficient to the constant 
coefficient. In symbols, if 

(x 
? 

r1)(x 
? 

r2) 
''' 

(x 
? 

rn) = xn + an_1xn~1 + ? ? ? + axx + a0 (1) 

then 

1 1 1 
-1-h ? ? ? H-= ?a1/a0. 
*\ r2 rn 

Assuming that the same law must hold for a power series expansion, he applied it 
to the function /, concluding that 

1111 1 

6=^+4^2 
+ 

9^2 
+ 

16tt2 
+ '"' 

Multiplying both sides of this equation by it2 yields ir2/6 as the sum of Euler's 
series. 

Why is this not considered a valid proof today? The problem is that power series 
are not polynomials, and do not share all the properties of polynomials. To get an 

understanding of the property that Euler used, that the reciprocals of a polyno- 
mial's roots add up to the negative ratio of the two lowest order coefficients, let us 
consider a polynomial of degree 4. Let 

p(x) =x4 + a3x3 + a2x2 + axx + a0 

have roots rvr2,r3,r4. Then 

p(x) = (x-r1)(x-r2)(x-r3)(x-r4). 

If we multiply out the factors at the right, we find that 

a0 = r\r2r3rA 

<*i = ~r2r?>r4 
~ 

r\^U 
~ 

rxr2rA 
- 

V2r3. 

From these it is clear that 

1111 
-a1/a0 =-1-1-1-. 

rx r2 r3 r4 

A similar argument works for a polynomial of any degree. 
Notice that this argument would not work for an infinite polynomial without, at 

the very least, some theory of infinite products. In any case, the result does not 

apply to all power series. For example, the identity 

1 9 , = 1 +x+x2+x2> + - ' 
1- 

holds for all x of absolute value less than 1. Now consider the function g(x) = 2 - 

1/(1 - x). Clearly, g has a single root, 1/2. The power series expansion for g(x) is 

1 -x -x2 -x3 - ? ? ? , so a0 = 1 and ax= 
? 1. The sum of the reciprocal roots 
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does not equal the ratio -a1/a0. While this example shows that the reciprocal 
root sum law cannot be applied blindly to all power series, it does not imply that 
the law never holds. Indeed, the law must hold for the function f(x) = sin yfx /yfx 
because we have independent proofs of Euler's result. Notice the differences 
between this / and the g of the counterexample. The function / has an infinite 
number of roots, where g has but one. And / has a power series that converges 
for all x, where the series for g converges only for -1 <x < 1. Is there a theorem 
that provides conditions under which a power series satisfies the reciprocal root 
sum law? I don't know. 

Euler's proof is generally conceded not to hold up to today's standards. There 
are a number of proofs that are considered acceptable, and they display a wide 

variety of methods and approaches. Shortly we will cover several of these proofs. 
However, before leaving Euler, two more points deserve mention. First, the aspect 
of Euler's methods that are considered invalid today generally involve the informal 
and intuitive way he manipulated the infinitely large and small. The modern 

subject of nonstandard analysis has provided in our time what Euler lacked in his: 
a sound treatment of analysis using infinite and infinitesimal quantities. The 
methods of nonstandard analysis have been used to validate some of Euler's 

arguments. That is, it has been possible to develop logically correct arguments that 
are conceptually the same as Euler's. In [12], for example, Euler's derivation of an 
infinite product for the sine function is made rigorous. This product formula is 

closely related to Euler's argument traced above. Euler gave another proof in 1748, 
again by comparing a power series to an infinite product. This argument has also 
been made rigorous using nonstandard analysis [14]. 

The second point I wish to make is that Euler was able to generalize his 
methods to many other sums. In particular, he developed a formula that gives the 
sum 1 + 1/2* + 1/3* + 1/4* + ? ? ? for any even power s. The idea of allowing the 

power s to vary prompts the definition of a function of s: ?(s) = 1 + 1/2S + 1/3S 
+ 1/4* + ? ? ? . This is called the Riemann zeta function, and it has great signifi- 
cance in number theory. When s is an even integer, Euler's formula gives the value 
of ?(s) as a rational multiple of irs. Interestingly, while the zeta function values 
are known exactly for the even integers, things are much more obscure for the odd 

integers. For example, it was not even known for sure that ?(3) is irrational until 
1978. An interesting account of this discovery can be found in [19]. The November 
1983 issue of Mathematics Magazine is devoted to articles on Euler, [10] being one 

example. 

Modern Proofs 

Let us turn now to the modern proofs of Euler's result. We will consider five 
different approaches. The first proof uses no mathematics more advanced than 

trigonometry. It is not as spectacular as some of the other proofs, in that it doesn't 

really have strange twists or connections to other areas of mathematics. On the 
other hand, it generalizes in a direct way to derive Euler's formula for ?(2tz). The 
second proof is based on methods of calculus, and involves a sequence of 
transformations that will take your breath away. Next, we will enter the realm of 

complex analysis and use a method called contour integration. The fourth proof, 
also in the complex world, involves techniques from Fourier analysis. Finally, we 
finish with a proof based on formal manipulations that Euler himself would have 
been proud of. This last approach uses both complex numbers and elementary 
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calculus. In the middle of this sequence of proofs we will take a brief time out for 
an application. 

Complex numbers show up repeatedly in these proofs, so it is appropriate here 
to remember a few elementary properties. Most important is the identity elx = 

cos x + / sin x, along with the special cases el7r = -1 and einn = ( ? l)n. Raising 
both sides of the general identity to the nth power produces de Moivre's theorem: 
cos nx + / sin nx = (cos x + / sin x)n. By expanding the power on the right and then 

gathering real and complex parts, formulas for cos nx and sin nx are obtained. For 

a complex number x + iy, the absolute value is defined as \x + iy\ = \x2 + y2 and 
the conjugate is x + iy = x ? iy. If (r, 6) are the polar coordinates for (x, y), then 
x + iy = reld. 

It will also be necessary to use the familiar sigma notation 

E/(*)=/(l)+/(2)+/(3)+"?, 
k = \ 

which renders Euler's result as 

E- = ? 

Trigonometry and Algebra. The first proof, published by Papadimitriou [15], 
depends on a special trigonometric identity. Once the identity is known, the 
derivation of Euler's result is fairly direct and unsurprising. Apostol [2] generalizes 
this proof to compute the formula for ?(2n). A closely related proof is given by 
Giesy [7]. Note that Apostol and Giesy each give several additional references to 

elementary derivations of Euler's result. 
The trigonometric identity involves the angle co = 7r/(2m + 1), and several of its 

multiples. The identity reads 

m(2m 
? 

1) 
cot2w + cot2(2w) +cot2(3co) + ? ?? 

+cot2(mw) =-. (2) 

For example, with m = 3 we have co = tt/7 and the identity reads 

cot2 o) + cot2(2w) + cot2(3w) = 5. 

We will use identity (2) to derive the sum of Euler's series, and then discuss the 
derivation of the identity. 

For any x between 0 and 77/2, the following inequality holds. 

sin x < x < tan x 

Squaring and inverting each term in the inequality leads to 

1 
COt2 X < ?7 < 1 + COt2 X. 

X 

Now to use (2), we will successively replace x in this inequality by co, 2co, 3co, and 
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so on, and sum the results. This gives 

cot2 co + cot2(2w) + cot2(3w) + ? ? ? + cot2(mco) 

< 1/co2 + l/4co2 + l/9co2 + ? ? ? + l/m2co2 

<m + cot2 co + cot2(2co) + cot2(3w) + ? ? ? + cot2(raco). 

Using identity (2) then produces 

m(2m-l) 1/11 1 \ m(2m-l) ??-- <-rl + - + -+---+?r< ??-- +m. 
3 co2{ 4 9 m2J 3 

For a final transformation, multiply through by co2 and substitute co = ir/(2m + 1): 

m(2m ? IW2 11 1 m(2m ? l)ir2 mir2 
<1+ - + -+??? +?r < ?-^r- + 

3(2m + l)2 4 9 m2 3(2m + l)2 (2m + l)2 
' 

This final set of inequalities provides upper and lower bounds for the sum of the 
first m terms of Euler's series. Now let m go to infinity. The lower bound is 

m(2m 
? 

l)ir2 2m2 ? m 

3(2m + l)2 -(77V6)2m2 + 2m + 0.5 

which approaches ir2/6. At the same time, the upper bound also approaches 
772/6 as its second term decreases to 0. Euler's sum is squeezed in between these 

bounds, and so it must equal tt2/6 as well. 
This completes the proof of Euler's result, subject to the validity of identity (2). 

For completeness, we will prove that next. Interestingly enough, the derivation 
uses a property of polynomials very similar to the one used in Euler's proof above. 

Specifically, for any polynomial 

anxn+ an_lxn~l + ??? 
+a0 

the sum of the roots is just -an_l/an. The derivation of this property is so similar 
to the previously given proof of the reciprocal root sum law that it is recommended 
as an exercise for the reader. We will use the property by considering a polynomial 
whose roots are the terms cot2(kco) on the left side of (2). Equating the sum of the 
roots to the negative ratio of the two highest order coefficients will yield the 
desired identity. 

The polynomial is generated by manipulating de Moivre's identity with n odd. 

Considering just the imaginary parts of each side of the identity, we begin with 

nd= 
['Msin0cos"-10- [n jsin3 

0cos"-3 d + ??? ? sin" d 

= smn6\(")cotn-10- l")cotn-3d+ ??? ?1|. 

sin 

1/ \3, 

Assuming that 0 < 6 < 77/2, we may divide through by sin" 6 to obtain 

sinnd 
"\cotn-10-i'l\cotn-30+ ??? ?1. 

sin" 0 \ 1 / 13 
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Now n is odd, so n ? 1 is even. Let us express the exponents on the right side of 
the preceding equation in terms of m = (n - l)/2: 

sin nd 

(^]cot2m0- ("]cot2m~20 
+ ??? ?1. 

sin"0 \1 

This is where we see the polynomial emerge. Make the substitution x = cot2 6 and 
we have 

sinnd 

sin" n0 1/ 3 n*xm-\"\xm-l+'-?l. 

At the right is a polynomial; we can read off the two leading coefficients. The 

expression at the left reveals to us m distinct roots. Indeed sin nd = 0 for 
6 = ir/n, 2ir/n, . . . , mir/n, so we would like to conclude that x = 

cot2 ir/n, cot2 2ir/n,..., cot2 mir/n are m distinct roots of the polynomial. It will 
suffice to verify that all of the 0's are strictly between 0 and 77/2 since then they 
generate distinct positive values of the cotangent function. Remembering that 
n = 2m + 1, we see that the largest 6 is 77 -m/(2ra + 1) which is evidently less 
than 77/2. 

From this analysis, we conclude that the polynomial ("pm-(^pm_1+ 
??? ?1 

has the roots cot2ir/n,cot2 2ir/n,cot2 3ir/n,...,cot2mir/n. The sum of these 

roots is the negative ratio of the two leading coefficients: (" j/f" j. To complete the 

derivation, we set co = 77-/(2 m + 1) and compute 

cot2w + cot2(2w) + ? ?? 
+cot2(mw) = 

n(n-l)(n-2)/6 

n 

(n-l)(n-2) 

6 

2m(2m 
? 

1) 

6 

m(2m 
? 

1) 

This completes the first proof. Although it is fairly direct, it requires the use of an 
obscure identity. Other than that, nothing more difficult than high school 

trigonometry is required, and there is nothing particularly surprising or exciting 
about the argument. The next proof provides a dramatic contrast. It uses methods 
of calculus, and makes several surprising and unexpected transformations. 

Odd Terms, Geometric Series, and a Double Integral. The next proof is one 
I originally saw presented in a lecture by Zagier [20]. He mentioned that the proof 
was shown to him by a colleague who had learned of it through the grapevine. It is 

closely related to a proof given by Apostol [3], but has a couple of unique twists. I 

have not seen this proof in print. 
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It will simplify the discussion to let E represent YTk=^/k2. The point of the 

proof is then to show that E = ir2/6. We begin with just the even terms of the 
sum. Observe: 

111 " 1 
o2 72 72 ^ 2 a2 ?2 ^ /?,x2 2Z 4Z 6Z ~x (2kY 

1 

1 " 1 

^ a K2 

4 ^ k2 

1 

Since the even terms add up to one fourth of the total, the odd terms must account 
for the remaining three fourths. Write this in equation form as 

T^= E _ ,?2- (3) 
3 ? 1 

4?~ *_0(2* + l) 

Now we shift gears. Consider the following definite integral: 

,24 + 1 

2^ = - 
2/k + l 

1 

2/c + 1 

Of course, this equation would be just as correct if we used the variable y in place 
of x. Therefore we may write 

(3+t)1-/.,*"*jC'"* 

= 
f f x2ky2k dxdy 
/0 ?'o 

and this is substituted in equation (3) to obtain 

-?= E C Cx2ky2kdxdy. 
4 k=Qhh 

For the next step, exchange the sum and the double integral to obtain 

-E= CC Zx2ky2kdxdy. 

Concentrating on the sum part, notice that its terms are the powers of x2y2. The 

geometric series formula mentioned in the first section gives the total as 

1/(1 -x2y2), leading to 

3 ,i ,i 1 

4 A) A) l-xzy2 
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To complete the derivation, we need only evaluate this double integral. An 

ingenious change of variables makes this step trivial. The substitution is given by 
x = sin w/cos v and y = sin^/cos u. Applying the methods of multivariate calcu? 

lus, we can show that dxdy/{\ ?x2y2) = dudu, and that the region of integration 
in terms of u and u is the triangle in the first quadrant illustrated in Figure 2. 

Therefore, the double integral yields the area of the triangle, 772/8, which implies 
that 

3 T72 

4? 
= 

T' 

Thus, E = 772/6, as required. 

x = sin u/cos v 
y = sin u/cos u 

Figure 2 
Transformed region of integration. 

Two comments should be made here. First, interchanging the integral and the 
sum does require some justification. In Euler's day, the conditions under which 
such an operation is valid were not understood. Today the conditions are known 
and are generally considered in an advanced calculus course. In the case at hand, 
since 1/(1 -x2ky2k) is positive at every point in the region of integration save 

(1,1), the monotone convergence theorem [16, Theorem 10.30] provides the 

necessary justification. One should also address the fact that the integrand in the 

original integral is undefined at one point of the region of integration; the usual 
methods for improper integrals apply. 

Second, the change of variables in the double integral also requires a little work. 
Recall that the rule for transforming dxdy into an expression involving dudu 

depends on calculating the Jacobian of the transformation. And there is some 
effort involved in verifying that the change of variables transformation maps the 

triangle illustrated in uv space into the unit square in xy space. 

Residue Calculus. The third proof applies a technique from complex analysis 
known as residue calculus. A full account of this technique can be found in any 
introductory text on complex analysis. For the present discussion the goal is simply 
an intuitive feel for the structure of the argument. For this purpose, we will discuss 
the basic ideas of residue calculus informally. 

Residue calculus concerns functions with poles (which may be thought of as 

places where a denominator goes to 0) defined in the complex plane. Suppose that 

/ is such a function, and has a pole at z0. Then there is a power series expansion 
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that describes how / behaves near z0. It might look like this: 

f(z0+ z) = a_2z~2 + a_xz~l + a0 + axz + ? ?? . 

The fact that there is a pole at z0 is revealed by the negative powers of z. It is 
evident that as z goes to 0, f(z0 + z) blows up. In this example there are two terms 
with negative powers of z. In the general case, there may be any finite number of 
terms with negative powers of z. 

A second central ingredient in residue calculus is the complex integral. For this 

discussion, the complex integral may be thought of as a kind of line integral. The 

integrand f{z)dz is an exact differential if / is the derivative of a complex 
function throughout a region containing the path. The complex integral behaves 
like a line integral in that over a closed path, the integral of an exact differential is 
0. In particular, we will consider a closed path that encloses 0, and for the 

integrand we take the expansion of f(z0 +z). Each term in the expansion is the 
derivative of a complex function, except for the term with exponent -1. This 

corresponds to the fact in real calculus that the antiderivative of xk is xk + l/ 
(k + 1), except when k= -1. Of course, in the real case, we know that the 
antiderivative of 1/x is ln x. Unfortunately, in the complex plane, it is not possible 
to define a natural logarithm consistently on any closed path encircling the origin. 
In fact, a line integral of z_1 around such a path does not produce 0, rather, it 

produces 277/. This actually makes good sense intuitively, if we think about how a 

complex natural logarithm should behave. In polar form, any complex number z 
can be expressed as reld = e{nr+ld where (r, 6) are the usual polar coordinates for 
the point z in the complex plane. The natural logarithm should then be ln r + W. 
Now if we integrate 1/z along a path from zx to z2, we expect the result to be 

\nr2 + i62- ln rx 
? idv On our closed path, zx=z2, and r2 

? 
rl = 0. But if we 

traverse the path once counterclockwise, varying 0 continuously along the way, 
then 62 

- 
0X is 2 77. Thus, the integral should produce a value of 277/. To generalize 

slightly, if we integrate f(zQ + z) along a path circling 0 once counterclockwise, 
every term of the sum vanishes except the z_1 term, and integrating that term 
results in a_x- 2 77/. Since the contribution of the z_1 term is all that is left of / 
after integrating, the coefficient a_x is called the residue of / at z0. 

The functions studied in the residue calculus might blow up at more than one 

place. For example, the function l/(z2 + 1) has poles at both / and -/. But if a 

function can always be expanded in a power series with a finite number of negative 
exponent terms, then the line integral about a simple closed path (in the counter? 

clockwise direction) encircling a finite number of poles is equal to 277/ times the 

sum of the residues at those poles. 
This is all very interesting, but what on earth does it have to do with Euler's 

sum? The answer is that using residue calculus, we can compute a sum by doing a 

complex integral. Actually, we will use a limiting argument involving a sequence of 

paths Pn. Each of these paths encloses a finite number of poles for our function 

f(z), and the sum of the residues will include finitely many of the terms of Euler's 

sum. As n goes to infinity, two things will happen. First, the line integral of / over 

the path Pn will go to 0. But at the same time, the sum of the residues will 

approach an expression which contains all the terms of Euler's sum. Equating the 
sum of the residues to 0 then yields our final result. 

The function used in this argument is f(z) = cot(irz)/z2. The path Pn is a 

rectangle centered at the origin with sides parallel to the real and imaginary axes 

in the complex plane (Figure 3). The sides intersect the real axis at ?(n + 1/2) 
and the imaginary axis at ?ni. It may be shown that |cot(77z)| < 2 for all z on the 
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Figure 3 
Path of integration. 

path Pn. (Actually, we can get a much more accurate bound than 2, but accuracy is 
not important here.) At the same time \z\ >n on the path, so \f(z)\ <2/n2. 
Bounding \f(z)\ on the path in this way permits us to estimate the integral. We 
have 

(j> f(z)dz < r(8w + 2) 

where Sn + 2 is the length of the path. Now it is clear that as n goes to infinity, the 

integral goes to 0. 
To complete the argument, we observe that / has poles at each of the integers, 

and determine that the residue is I/ttIc2 at k # 0, and -77/3 at 0. Before carrying 
through these calculations, let us see how the derivation of Euler's formula 
concludes. Since the integral over Pn goes to 0, we infer that 277/ times the sum of 
all the residues is 0. Combining the residues at k and ?k into a single term, this 
leads to 

?2ir2i { 1 1 1 
0. 

A trivial rearrangement of this equation reveals E = tt2/6. 
All that remains of this proof is the calculation of the residues. For the residue 

at 0, let us observe that 

COS(77Z) 
ZCOt(77Z) =Z~?-- 

Sin(77Zj 

l-772Z2/2 + 774Z4/24- 
?'? 

" Z 
7TZ - 773Z3/6 + 775Z5/120 

- ? ? ? 

l-772Z2/2 + 774Z4/24- = 
77-773Z2/6+775Z4/120- 

??? ' 
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Using the long division algorithm, the ratio can be expressed as a power series. 
The first few terms are shown below. 

1 77Z2 773Z4 
ZCOt(77Z) =- 

Reading off the coefficient of z"1, we see that the residue at 0 is -77/3. 
We use a slightly different method for the residue at k. Suppose that we 

calculated the power series for f(k +z) as 

f(k +z) = a_xz~l + a0 + a1z + a2z2 + ???. 

Then 

zf(k +z) =a_x +aQz -\-a1z2 + a2z3 + ??? 

and it is clear that 

a_x = lim [zf(k +z)] 

cot(77(/c + z)) = lim z-~- 
*-o (k+zf 

z cos(77(A:+ z)) 

z-^o sin(77(/:+z)) (k+z) 
2 

Apply L'Hospital's rule to the first factor, and find a_x = \/irk2. This gives the 
residue at k as previously asserted. 

This calculation appears to rely on knowing in advance that the power series for 

f(k + z) has only one term with a negative power of z. Why were there no terms 

involving z~2,z~3, as there were for the residue at 0? Actually, the answer is 

implicit in the limit we calculated above. Since zf(k+z) has a limit at 0, its power 
series cannot have any terms with negative powers of z. Thus, every term of the 
series for f(k + z) must have an exponent of at least - 1. Trying to apply the same 

argument at 0 would require evaluating the limit of zf(z) = coi{irz)/z. The failure 
of that step alerts us to the existence of additional negative exponent terms in the 

power series at 0. 
It seems to me that the key insight in the foregoing proof is using an integral to 

evaluate a sum. In this case, it is the machinery of residue calculus that connects 
the sum and integral. Once / has been defined, the remaining steps are a 

straightforward exercise of residue calculus methods. The next argument also uses 
an integral to evaluate a sum, and again involves complex numbers, but it has a 

distinctly different flavor. There, we use vector algebra techniques in the context of 
Fourier analysis. 

Fourier Analysis. Before discussing the proof using Fourier analysis, it will be 

helpful to review a little vector analysis. In three-dimensional space, think of a 
vector as a directed line segment (that is, a segment with an arrow at one end). For 
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vectors a and b, a fundamental operation is the dot or inner product a ? b. This 

may be defined as the product of the lengths of a and b and the cosine of the 

angle between them. Thus, if a and b are perpendicular, then a ? b = 0, while for 

parallel a and b, the dot product is just the product of the lengths (or the negative 
of the product if the vectors are parallel and oppositely directed). 

The inner product is useful in breaking down vectors into simple pieces. Let ex, 

ey, and ez be vectors of length 1 starting at the origin and pointing along the x, y, 
and z axes. Every other vector in space can be built up using sums and multiples of 
these three special vectors. A typical example would be something of the form 

3ex-\-5ey-\- \3ez. This is the vector which begins at the origin and ends at the 

point (3,5,1.3). Just as the three coefficients, 3, 5, and 1.3, completely determine 
the vector in this example, so any vector is uniquely determined by its three 
coefficients relative to the e vectors. 

Notice that since any two of the e vectors are perpendicular, their dot product is 
0. And the dot product of any of these vectors with itself is 1. These two 

properties, which are characteristic of an orthonormal basis, provide a simple way 
to compute the coefficients which describe any vector. Indeed, if we have a = 

pex + qey + rez, then by taking the dot product of each side with ex we find 

p = a - ex. Similar reasoning leads to q = a -ey and r = a-ez. That is, the coeffi? 
cient for each of the e vectors can be found by computing the dot product of a 
with that vector. As another consequence of orthonormality, observe that a- a=p2 
+ q2 + r2. The derivation of this identity, 

a-a = (pex + qey + rez) '(pex + qey + rez) 

= p2ex 
? 
ex + q2ey 

? 
ey + r2ez 

? 
ez + 2pqex 

? 
ey + 2prex 

? 
ez + 2qrey 

? 
ez 

= p2 + q2 + r2, 

again uses the fact that the dot product of any of the e's with itself is 1, while the 
dot product between two different e's is 0. 

In Fourier analysis, there is a wonderful analogy with the ideas of vectors, dot 

products, and orthonormality. In place of vectors we deal with complex-valued 
functions of a real variable. The dot product of two functions is defined using 
integrals: f'g = (l/27r)fZ7rf(t)g(t)dt (the bar denotes complex conjugation). In 

place of the special vectors ex, ey, and ez, we have the functions 1 =e0lt, e?lt, 
e?2lt,e?3lt,... . These form an orthonormal basis, and any well-behaved function 

/ can be expressed using the basis functions in just the same way that vectors in 

space can be expressed in terms of the e vectors. As was the case for vectors, the 
coefficients for the basis functions are just dot products. Thus, if we write 

f(t)= 
? - ? 

+a_2e~2it + a_xe~lt + aQ + axeif + a2e2it + ?? ? , then 

a2=f'e2lt 

= 
7-/" f(*)e-2itdt Z77 J -tt 

and similarly for all the other coefficients. Finally, in Fourier analysis there is an 

analog for the formula a - a =p2 + q2 + r2. Because the coefficients in the Fourier 
case can be complex numbers, it is their squared absolute values (not simply their 

squares) that must be summed, but otherwise the analogy is exact. Thus, we have 
the formula /?/= ??? 

+|a_2|2+ \a_x\2+ \aQ\2 + \ax\2 + \a2\2 + 
??? . It is this 

last fact that we use to derive the value of Euler's sum. 
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Here is how it works. The function to use is f(t) = t. By direct calculation, 

1 
'?'- 

tJ. 
t2dt 

1 P 

TT2 

Now we will compute /?/ in terms of the coefficients ak. As an example, let's 
calculate a2. 

1 /.*? 
a2= 

? 
/ te~2lt dt 

2 77 ' _^- 

-g "2/' 

277. 

1 2if + 1 
~ 

2tt" 4~ 

= 
2" 

The last step in this calculation takes advantage of the fact that e2lTl = 1. A similar 
calculation done with an arbitrary integer n in place of 2 discovers that an = ?i/n 
for all n except 0, and that a{) = 0. Thus, for every n but 0, \an\ =l/n, and 

???+l<z_2l + l<z_il + \a0\ + IflJ + |fl2l +?'* is none other than Euler's sum 
written twice. This leads to 2E = 772/3, and dividing by 2 completes the proof. 

Interlude: An Application of Euler's Result. Let's take a break from all these 

proofs, and consider an application. If an infinite sum of positive terms converges, 
it can be used to create a probability distribution. Just so for Euler's sum. Let 

pk = (6/7r2)(l/k2). Then the pk sum to 1, and can be regarded as a discrete 

probability distribution, with pk the probability of the kth outcome. Does this 
distribution actually have any use? As it turns out, it does. In fact, pk is the 

probability that two randomly selected positive integers have greatest common 
divisor (GCD) equal to k. One must be a little careful about what is meant by 
randomly selecting an integer, for there is obviously no way to make all the positive 
integers equally likely and still have total probability 1. This is a technical point 
that can be put aside for the moment, in favor of a heuristic approach. To proceed, 
define qk to be the probability that two randomly selected positive integers have 
GCD k. We show that qk=pk. 

The GCD of integers a and b equals k if and only if two conditions hold. First, 
both integers must be multiples of k. Second, the GCD of a/k and b/k must be 
1. Now the probability that two randomly selected integers are both multiples of k 
is 1/A:2. The probability that GCD(a/k,b/k)= 1, given that a and b are multi? 

ples of k, is just the same as the unconditional probability that two positive 
integers have GCD 1, for as a and b range over the multiples of k, a/k and b/k 
range over the full set of positive integers. Combining the two preceding observa- 
tions shows that qk = qx(\/k2). Since the qk must sum to 1, we see that qx = 6/ir2, 
hence qk=pk, as asserted. 

In retrospect, knowing the value of Euler's sum was a necessary step in 

determining the distribution of the GCD function. As an interesting consequence, 
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we can now assert that a randomly generated fraction will be in lowest terms with 

probability 6/772. I found these ideas in [1] (which comments on the technical 

point we set aside above) and [13]. 
Let us return now to our tour of proofs and examine a final derivation. 

A Real Integral with an Imaginary Value. The final proof was published by 
Russell [17]. It begins with the definite integral 

/= / ln(2cosx) dx. 

Now 2 cos x = eix + e~ix = eix{\ + e~2ix). Therefore, ln(2 cos x) = \n(eix) + 

ln(l +e~2ix) = ix + ln(l + e~2ix). We make the substitution in the integral and 
arrive at 

/= f ix + \n(l+e~2ix)dx 

2 
= i? + r/2\n{l+e-2ix)dx. (4) 8 Jn 

The next step is to replace the logarithm with a power series, and integrate term by 
term. The power series expansion is [9, p. 401] 

ln(l + x) = x - x2/2 + *V3 - *V4 + ? ? ? 

or, replacing x by e~2lx, 

ln(l + e~2ix) =e~2ix - e~4ix/2 + e~6ix/3 
- e'*ix/A + ? ? ? . 

Integrate: 

p ? 2ix p ? 4ix p ? 6ix p ? 8ix 

f'ln(l 
+ e~2ix) dx = ?? 

-2/-22 -2/-32 -2i-42 

-1 ( e~4ix e~6ix e~8ix 
- e-2ix-1-, . 
2* 22 32 42 

This last expression is to be evaluated from 0 to n/2. That yields 

r ln(l + e-2ix)dx 

-1/ e-2,v-l e~3i7T-l e"4'v-l 
- 

irr"-1?i2?*?-?+-- 

Now every exponential either evaluates to 1 (for even multiples of iir) or to -1 

(for odd multiples). Therefore, half of the terms drop out, and the remaining terms 
are all fractions with a - 2 in the numerator and an odd square in the denomina- 
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tor. Thus 

/;/2i?(i+?-2")*=7(i 
+ 

| 
+ 

| 
+ 

-). 

As we have seen before, the odd terms of Euler's sum add up to 3/4 of the total. 

Combining this with the fact that \/i = -i, we conclude that 

rir/2 ~~3l 
I ln(l + e~2,x) dx =-E. 
?\) 4 

At this point, we must return to the integral we first considered. Substituting the 

expression just derived into (4), we obtain 

[tt2 3 \ 
I = i\-E\. 

\ 8 4 j 

But / is real, and it is equal to a pure imaginary. This forces both sides of the 

equation to vanish. Setting the right-hand side to 0 gives us the familiar conclusion 
E = 772/6. Setting the left-hand side to 0 produces an added bonus: 

/ ln(cos x) dx = ? ? ln2. 
Jn 2 

In this whirlwind of manipulations, there is probably nothing that would have 
disturbed Euler. In contrast, a modern student of mathematics would find reasons 
for skepticism at practically every step. First off, the original integral is improper, 
so we need to worry about convergence. Next, in order to use the natural logarithm 
for complex variables, we need to be sure that we can restrict the complex numbers 
to a suitable domain. (In this case, it is enough to observe that we never need to 

apply the logarithm to a negative real.) Thirdly, the power series for the natural 

logarithm converges within a circle of radius 1 centered at 0 in the complex plane. 
Unfortunately, for every x in the domain of integration, e~2lx is on the boundary 
of this circle, so that we must be concerned about convergence of the power series, 
too. (For this step we may appeal directly to Theorem 3.44 of [16].) And finally, 
there is the term by term integration of the sum. In general terms, we handle these 

problems by starting in the middle and working our way out. The idea is to start 
with the series formulation of the integral, but let the upper limit be less than 77/2. 
Then we can justify the term by term integration and take a limit to reach the 

upper limit of 77/2, determining the value for the integral in the process. Working 
in the other direction, now that we know that the integral exists in the case of the 

power series formulation, we are justified in performing the manipulations that 

generate the integral that the argument above started with. This verifies that the 

original improper integral is indeed defined. For additional comments on justifying 
the steps in the proof, see [17]. 

Conclusion 

We have seen a variety of proofs of Euler's result. It is interesting how wide a 

range of mathematical subjects appeared in these proofs. Euler's proof has the 
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appearance of direct algebraic manipulation, but involves an unfounded assump- 
tion about the properties of power series. The first valid proof we considered 
works directly from the definition of convergent power series by providing bounds 
for partial sums of Euler's series. Two proofs each involve replacing the sum with a 
different operation. Thus, in residue calculus, a sum of residues is replaced by a 

complex line integral, while in Fourier analysis, a sum of squared coefficients is 

replaced by a dot product. And finally, two proofs use a technique of interchanging 
a sum and an integral to transform Euler's series into another form that can be 
summed directly. It should come as no surprise that there are still more proofs of 
Euler's formula (including a few by Euler himself). The interested reader is 

encouraged to consult the references for more approaches and additional refer- 
ences. Of historical interest is reference [11], the first edition of which appeared in 
1921. In this encyclopedic work, several proofs of Euler's result can be found (see 
articles 136, 156, 189, 210) in the context of general procedures for manipulating 
and analyzing series expansions. The proof in article 210 is closely related to the 
Fourier analysis proof given above. 

Acknowledgments. Thanks are due Melvin Henriksen, Richard Katz, Alan Krinik, and Harris Shultz 
for alerting me to some of the papers cited in the article, to Judith Grabiner and Mark McKinzie for 
help with the historical references, and to the referees for many helpful suggestions. 

References 

1. Aaron D. Abrams and Matteo J. Paris, The probability that (a,b)= 1, College Mathematics Journal, 
23 (1992) 47. 

2. Tom M. Apostol, Another elementary proof of Euler's formula for ?(2w), American Mathematical 
Monthly, 80 (1973) 425-431. 

3. Tom M. Apostol, A proof that Euler missed: Evaluating ?(2) the easy way, Mathematical 
Intelligencer, 5 (1983) 59-60. 

4. Raymond Ayoub, Euler and the zeta function, American Mathematical Monthly, 81 (1974) 
1067-1085. 

5. Paul Erdos and Underwood Dudley, Some remarks and problems in number theory related to the 
work of Euler, Mathematics Magazine, 56 (1983) 292-298. 

6. Leonhard Euler, De Summis Serierum Reciprocarum, Commentarii Academiae Scientiarum 
Petropolitanae, 1 (1734/35), 1740, pp. 123-134 = Opera Omnia, 14, 73-86. 

7. Daniel P. Giesy, Still another elementary proof that Ll/k2 = ir2/6, Mathematics Magazine, 45 
(1972) 148-149. 

8. Judith V. Grabiner, Who gave you the epsilon? Cauchy and the origins of rigorous calculus, 
American Mathematical Monthly, 90 (1983) 185-194. 

9. Melvin Henriksen and Milton Lees, Single Variable Calculus, Worth, New York, 1970. 
10. Morris Kline, Euler and infinite series Mathematics Magazine, 56 (1983) 307-314. 
11. Konrad Knopp, Theory and Application of Infinite Series (Translated from the second German edition 

and revised in accordance with the fourth), Hafner, New York, ca. 1947. 
12. W. A. J. Luxemburg, What is nonstandard analysis? American Mathematical Monthly, 80(6) part II 

(June-July 1973) 38-67. 
13. Bill Leonard and Harris S. Shultz, A computer verification of a pretty mathematical result, 

Mathematical Gazette, 72 (1988) 7-10. 
14. Mark B. McKinzie and Curtis D. Tuckey, Euler's proof of T%=ll/n2 = ir2/6, Annual meeting of 

the American Mathematical Society, San Antonio, Texas, January 1993. 
15. Ioannis Papadimitriou, A simple proof of the formula YTk = lk~2 = ir2/6, American Mathematical 

Monthly, 80 (1973) 424-425. 
16. Walter Rudin, Principles of Mathematical Analysis, 2nd Edition, McGraw Hill, New York, 1964. 
17. Dennis C. Russell, Another Eulerian-type proof, Mathematics Magazine, 60 (1991) 349. 
18. Nicholas Shea, Summing the series l/l2 + 1/22 + 1/32 + ? ? ? , Mathematical Spectrum, 21 

(1988-89) 49-55. 

420 THE COLLEGE MATHEMATICS JOURNAL 

This content downloaded from 168.156.71.15 on Fri, 7 Nov 2014 12:06:21 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


19. Alfred Van der Poorten, A proof that Euler missed... Apery's proof of the irrationality of ?(3), 
Mathematical Intelligencer, 1 (1978-1979) 195-203. 

20. Don Bernard Zagier, Zeta Functions in Number Theory, Annual meeting of the American Mathe? 
matical Society, Phoenix, Arizona, January 1989. 

Six Ways to Sum a Series 

(To the tune of Fifty Ways to Leave Your Lover) 

This sum converges to a limit, I can see, 
The terms decrease in size so very rapidly. 
Isn't there some way to tell what the sum turns out to be? 

There's got to be at least six ways to sum this series. 

I added up one hundred terms it took all night. 
I added fifty more, but still it was not right. 

"Though adding terms this way won't work," 
I said, "some other method might." 

I'll bet someone could find six ways to sum this series. 

Tally up the inverse roots, Toots! 

Add some bounds that use cotan, Stan! 

Double integrate a square, Cher! 

Just give it a try. 

Calculate a residue, Stu! 

Analyze a Fourier, Ray! 
Use an imaginary real, Neal! 

It's easy as ir\ 
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