2.4: The Precise Definition of the Limit

Augustin Louis Cauchy
1789 - 1857

Augustin-Louis Cauchy pioneered the study of
analysis, both real and complex, and the theory
of permutation groups. He also researched in
convergence and divergence of infinite series,
differential equations; determinants, probability
and mathematical physics.

Kart Theodor Wilhelm Weierstrass
1815 - 1897

Karl Weierstrass is best known for his construct;on of the theory of complex
functions by means of power series.

Definition: Let f be a function defined on some open interval that contains x =g , except possibly at o

itself. Then we say that the limit of f (x) as x approaches ¢ is L and we write im f (x} =L if for all

X

£ >0 there existsa & >0 such that if 0<Jx——a] <& then lf{x)éL! <E.

Notation:

1.} O is the lower case Greek letter éﬁim and refers to a small change in X .

2.) € isthe lower case Greek letter e;pss lo*)  and refersto a small change in \v[ .

Generally, a & — € proof has two parts:
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Definition: Let f be a function defined on some open interval that contains x = g, except possibly at

itself. Then we say that the fimit of f'(x) as x approaches a is L and we write lim J(x}=Lifforall
. B J'l"‘“}a

€ >0 there exists a & >0 such that if 0<’x~*a|<5 then lf(x)mLi<£.
(1) (2.)

Example 1: Prove lim (4x—7) =1
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b} The proof. For (B.), start with (1.} and end with (2.}
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Example 1 revisited: f J lﬂﬂ
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Two more general & — £ diagrams. Remember, we choose & and then use it to determine a
corresponding o .
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In this diagram, the emphasis is on the fact that §  In this diagram, the emphasis is on the fact that
represents the width of.an interval along the x- x = a* § are the vertical boundary lines of a
axis while £ represents the height of an interval region while y = b+ ¢ are the horizontal
along the y-axis boundaries, "



Recall: We say that the limit of f(x) as x approaches ais L and we write lim f(x)=Lifforall £>0
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there existsa & >0 such that if 0<|x—a| < J then V(x)—Ll <E.
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Example 2: Prove lilm(x2 +x—1) =5
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b) Prove it.
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We can use the precise definition to prove the validity of the limit laws in the previous section. The
proof of the sum law is given in the text.

Example 3: Prove that if im /(x} = L and limg(x) =M, then 1im(f(x)—g(x)) =L-M

X—=0a X K=l i
{2 (2} (3.)
provided the limits exist. This is called the difference law.

a) Guess O
We want ‘(f(x)—*g(x))—([,—M)ké‘.

£ b &
We can do this, by requiting tf(x)——L' < 5 and lg(x)—M? < 5
Since limits {1.) and (2.) exist, given & >0 there existsa &, > 0 such thatif 0 < |x—a,| < 0, then

If(x)—L

<§ and there exists a &, >0 such that if 0 <|x~a| < J, then i_f(x)-LkE.
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So we will choose & =min{4d,,d, }

b} Prove it.
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Note: The previous exercise makes use of the triangle inequality which states |a +bi < ia} +IbJ



Definition {an infinite limit): Let f be a function defined on some open interval that contains x =«
(except possibly o itself). Then lim /(x) =ce ifforalt M >0 there exists 0 >0 such that if

X

O<1x—a!<§ ther f(x) > m
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Example 4 (if time permits): Prove Hm ——— =20
13 (x_s)

P:f’ha@‘
C Jec mze ke gives
Choose & =

1% dc?x’«-ﬂ<$
=3 ﬁ‘xaf%{ cfj/m

2 (x-)'< f}; |
S (A-5)7

- <0
4 ’

H—-é,ru_a, j;ﬁ?"’\. :
X925 &-<)

Additional Resources:

There is a nice series of lectures on the precise definition of the limit at the Khan Academy. The first is
at: http://www khanacademv.org/video/limit-intuition-review

For more, there were over 300 hits on YouTube for, “precise definition of a limit quadratic”



