Graphing Quadratics (8.6 and 8.7)

Math 098

Graphing quadratic functions requires a strong understanding of the "toolkit" function $f(x) = x^2$

Table	Granh
Table	Ulapii

With that toolkit knowledge, we can graph the transformed "toolkit" quadratic $f(x) = a(x-h)^2 + k$

Let's explore each of the parameters: *a*, *h*, and *k*.

Note: A more rigorous development of these concepts (including the reasons why they work) can be found in section 8.6 of the text.

Example 1: Graph accurately

<u>Find the Formula</u>: Find the vertex of the general quadratic $f(x) = ax^2 + bx + c$ by completing the square.

Method: The vertex of a parabola

- a.) The vertex of the parabola given by $f(x) = ax^2 + bx + c$ is $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.
- b.) The longer version of the formula is: $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$
- c.) The *x*-coordinate of the vertex is $-\frac{b}{2a}$. The equation of the axis of symmetry is $x = -\frac{b}{2a}$. The second coordinate of the vertex is most commonly found by computing $f\left(-\frac{b}{2a}\right)$.

Example 5: Find the vertex of $g(x) = 2x^2 + 5x - 1$. Check with your graphing calculator.

Example 6: Consider $f(x) = 4x^2 - 12x + 3$. Find the vertex, all intercepts, the min/max value, and the range.

Example 7: Consider $g(x) = -18.8x^2 + 7.92x + 6.18$. Find the vertex, all intercepts, the min/max value, and the range.

<u>Summary</u>: The graph of a quadratic equation given by $f(x) = ax^2 + bx + c$ or $f(x) = a(x-h)^2 + k$

a.) The graph is a parabola

b.) The vertex is
$$(h,k)$$
 or $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$

c.) The axis of symmetry is
$$x = h$$
 or $x = -\frac{b}{2a}$

- d.) The *y*-intercept of the graph is (0, c)
- e.) The *x*-intercepts can be found by solving $ax^2 + bx + c = 0$
 - a. If $b^2 4ac > 0$, there are two real *x*-intercepts
 - b. If $b^2 4ac = 0$, there is one *x*-intercept
 - c. If $b^2 4ac < 0$, there are no real *x*-intercepts (although there are two complex zeros)
- f.) The domain of the function is $(-\infty,\infty)$
- g.) If a > 0:
 - a. The graph opens upward
 - b. The function has a minimum value of k at (h,k)
 - c. The range of the function is $[k,\infty)$

h.) If a < 0:

- a. The graph opens downward
- b. The function has a maximum value of k at (h, k)
- c. The range of the function is $(-\infty, k]$