Graphing quadratic functions requires a strong understanding of the "toolkit" function $f(x)=x^{2}$

Table	Graph

With that toolkit knowledge, we can graph the transformed "toolkit" quadratic $f(x)=a(x-h)^{2}+k$ Let's explore each of the parameters: a, h, and k.

- $f(x)=\boldsymbol{A}(x-h)^{2}+k$
- If $a>0$, the quadratic is \qquad or, more precisely, \qquad
- If $a<0$, the quadratic is \qquad or, more precisely, \qquad
- $f(x)=a(x-\boldsymbol{h})^{2}+k$
- Shift the quadratic \qquad or \qquad in the \qquad
\qquad of the sign you see.
- $f(x)=a(x-h)^{2}+\boldsymbol{K}$
- Shift the quadratic \qquad or \qquad in the \qquad
\qquad as the sign you see.

Note: A more rigorous development of these concepts (including the reasons why they work) can be found in section 8.6 of the text.

Example 1: Graph accurately

Find the Formula: Find the vertex of the general quadratic $f(x)=a x^{2}+b x+c$ by completing the square.

Method: The vertex of a parabola
a.) The vertex of the parabola given by $f(x)=a x^{2}+b x+c$ is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$.
b.) The longer version of the formula is: $\left(-\frac{b}{2 a}, \frac{4 a c-b^{2}}{4 a}\right)$
c.) The x-coordinate of the vertex is $-\frac{b}{2 a}$. The equation of the axis of symmetry is $x=-\frac{b}{2 a}$. The second coordinate of the vertex is most commonly found by computing $f\left(-\frac{b}{2 a}\right)$.

Example 5: Find the vertex of $g(x)=2 x^{2}+5 x-1$. Check with your graphing calculator.

Example 6: Consider $f(x)=4 x^{2}-12 x+3$. Find the vertex, all intercepts, the $\min / m a x$ value, and the range.

Example 7: Consider $g(x)=-18.8 x^{2}+7.92 x+6.18$. Find the vertex, all intercepts, the $\mathrm{min} / \mathrm{max}$ value, and the range.

Summary: The graph of a quadratic equation given by $f(x)=a x^{2}+b x+c$ or $f(x)=a(x-h)^{2}+k$
a.) The graph is a parabola
b.) The vertex is (h, k) or $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
c.) The axis of symmetry is $x=h$ or $x=-\frac{b}{2 a}$
d.) The y-intercept of the graph is $(0, c)$
e.) The x-intercepts can be found by solving $a x^{2}+b x+c=0$
a. If $b^{2}-4 a c>0$, there are two real x-intercepts
b. If $b^{2}-4 a c=0$, there is one x-intercept
c. If $b^{2}-4 a c<0$, there are no real x-intercepts (although there are two complex zeros)
f.) The domain of the function is $(-\infty, \infty)$
g.) If $a>0$:
a. The graph opens upward
b. The function has a minimum value of k at (h, k)
c. The range of the function is $[k, \infty)$
h.) If $a<0$:
a. The graph opens downward
b. The function has a maximum value of k at (h, k)
c. The range of the function is $(-\infty, k]$

