As seen in Math 091 and earlier in Math 098, the graphs of quadratic equations are parabolic in shape.
When solving quadratic equations, there are three cases:

No x-intercepts
No real-valued roots/zeros

One real-valued root/zero

Two x-intercepts
Two real-valued roots/zeros

Example 1: Solve $6 x^{2}=x+12$

Example 2: Solve $x^{2}=49$

Intuitively, how might we solve the last example $x^{2}=49$?

Method: The principle of square roots
a.) For any real number k, if $x^{2}=k$, then $x=\sqrt{k}$ or $x=-\sqrt{k}$.

Sometimes we write this using the notation: \qquad

Example 3: Solve
a.) $4 x^{2}=20$
b.) $-7 x^{2}+6=0$
c.) $9 x^{2}+10=0$

Example 4: Let $f(x)=(x+3)^{2}$, find all values of x such that $f(x)=6$. Find algebraic and graphical solutions.

Example 5: Solve $x^{2}-10 x+25=3$

Review:
a.) $x^{2}+8 x+16=(x \square)^{2}$
b.) $x^{2}-10 x+25=(x \square)^{2}$
c.) $x^{2}-7 x+\frac{49}{4}=(x \square)^{2}$

This leads us to a slick way to solve quadratic equations via completing the square.
Example 6: Solve $x^{2}+6 x-2=0$

Example 7: What number should be used to "complete the square"?
a.) $x^{2}+12 x+$ \qquad $=(x$ \qquad
b.) $x^{2}-3 x+$ \qquad $=(x$ \qquad
c.) $x^{2}-\frac{4}{3} x+$ \qquad $=(x$ \qquad

Example 8: Solve $x^{2}-10 x-3=0$ by completing the square.

Method: To solve a quadratic equation in x by completing the square
a.) Isolate the terms with variables on one side of the equation, and arrange them in descending order.
b.) Divide both sides by the coefficient of x^{2} if that coefficient is not 1 .
c.) Complete the square by taking half of the coefficient of x and adding its square to both sides.
d.) Express the trinomial as the square of a binomial (factor the trinomial) and simplify the other side.
e.) Use the principle of square roots (find the square roots of both sides).
f.) Solve for x by adding or subtracting on both sides.

Example 9: Solve $4 x^{2}+3 x-20=0$

Example 10: Find the x-intercepts of $y=2 x^{2}-5 x-3$

Formula: The compound interest formula
a.) If any amount of money P is invested at interest rate r, compounded annually, then in t years, it will grow to the amount A given by $A=P(1+r)^{t}$ where r is written in decimal notation.

Example 11: Find the interest rate if $\$ 6,250$ is invested and grows to $\$ 7,290$ in 2 years.

Example 12: The formula $s=16 t^{2}$ is used to approximate the distance s in feet, that an object falls freely from rest in t seconds. Ireland's Cliffs of Moher are 702 ft tall. How long will it take a stone to fall from the top? Round to the nearest tenth of a second.

