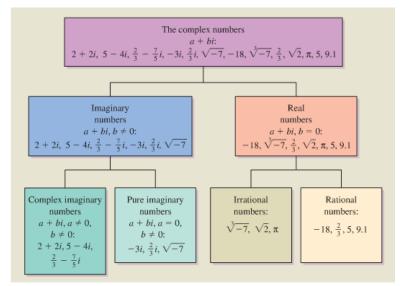
Complex Numbers (7.8)

Definition: The number i

i is the unique number for which $i = \sqrt{-1}$ and $i^2 = -1$

We can now define the root $\sqrt{-a} = \sqrt{-1}\sqrt{a} = i\sqrt{a}$ provided *a* is non-negative.

<u>Warning</u>: $i \neq$ _____


Example 1: Express in terms of *i*.

a.)
$$\sqrt{-15}$$
 b.) $\sqrt{-9}$ c.) $-\sqrt{-50}$

<u>Definition</u>: Imaginary numbers An *imaginary number* is a number that can be written in the form a+bi, where a and b are real numbers and $b \neq 0$.

Imaginary numbers have many real world applications in engineering and the physical sciences. Some applications include: control theory, improper integrals, fluid dynamics, dynamic equations, electromagnetism and electrical engineering, signal analysis, quantum mechanics, relativity, geometry, fractals, algebraic number theory, and analytic number theory

Note: Imaginary numbers are sometimes called complex numbers.

Example 2: Add or subtract

a.)
$$(4-5i)+(2+3i)$$

b.) $(3-i)-(5-2i)$

<u>Warning</u>: $\sqrt{-3} \cdot \sqrt{-3}$

Example 3: Multiply and simplify. Write you answers in the standard a+bi form

a.) $\sqrt{-9} \cdot \sqrt{-36}$ b.) $\sqrt{-6} \cdot \sqrt{-10}$

c.)
$$-2i \cdot 7i$$
 d.) $3i(4-7i)$

e.)
$$(2-3i)(4+5i)$$
 f.) $(3-5i)^2$

Definition: Conjugate of a complex number

The *conjugate* of a complex number a+bi is a-bi and the conjugate of a-bi is a+bi.

Example 4: Find and multiply by the conjugate

a.) -2+5i

conjugate: _____ and the product:

b.) 3-7*i*

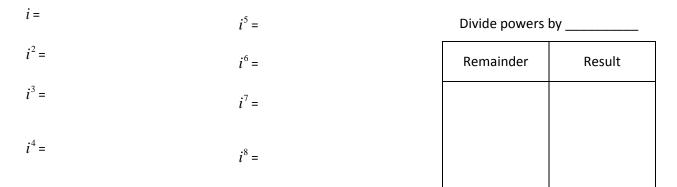
conjugate: ______ and the product:

c.) 5*i*

conjugate: _____ and the product:

Method: When dividing by complex numbers, we multiply by the ______

_____ in a manner similar to how we


rationalize the denominator.

Example 5: Divide. Write your answers in the form a+bi

a.)
$$\frac{4}{2-3i}$$

b.)
$$\frac{2+7i}{5i}$$

Explore powers of *i*

Example 6: Simplify

ż ²⁸ b.)	i^{46}
i ²⁸ b.)	

c.)	i^{33}	d.) <i>i</i> ⁷⁵
U.)	ι	u.) <i>i</i>

You can also work with complex numbers on the graphing calculator ...