Definition: The number i
i is the unique number for which $i=\sqrt{-1}$ and $i^{2}=-1$

We can now define the root $\sqrt{-a}=\sqrt{-1} \sqrt{a}=i \sqrt{a}$ provided a is non-negative.

Warning: $i \neq$ \qquad
Example 1: Express in terms of i.
a.) $\sqrt{-15}$
b.) $\sqrt{-9}$
c.) $-\sqrt{-50}$

Definition: Imaginary numbers An imaginary number is a number that can be written in the form $a+b i$, where a and b are real numbers and $b \neq 0$.

Imaginary numbers have many real world applications in engineering and the physical sciences. Some applications include: control theory, improper integrals, fluid dynamics, dynamic equations, electromagnetism and electrical engineering, signal analysis, quantum mechanics, relativity, geometry,
 fractals, algebraic number theory, and analytic number theory

Note: Imaginary numbers are sometimes called complex numbers.

Example 2: Add or subtract
a.) $(4-5 i)+(2+3 i)$
b.) $(3-i)-(5-2 i)$

Warning: $\sqrt{-3} \cdot \sqrt{-3}$

Example 3: Multiply and simplify. Write you answers in the standard $a+b i$ form
а.) $\sqrt{-9} \cdot \sqrt{-36}$
b.) $\sqrt{-6} \cdot \sqrt{-10}$
c.) $-2 i \cdot 7 i$
d.) $3 i(4-7 i)$
e.) $(2-3 i)(4+5 i)$
f.) $(3-5 i)^{2}$

Definition: Conjugate of a complex number

The conjugate of a complex number $a+b i$ is $a-b i$ and the conjugate of $a-b i$ is $a+b i$.
Example 4: Find and multiply by the conjugate
a.) $-2+5 i$
conjugate: \qquad and the product:
b.) $3-7 i$
conjugate: \qquad and the product:
c.) $5 i$
conjugate: \qquad and the product:

Method: When dividing by complex numbers, we multiply by the \qquad
\qquad as a \qquad in a manner similar to how we rationalize the denominator.

Example 5: Divide. Write your answers in the form $a+b i$
a.) $\frac{4}{2-3 i}$
b.) $\frac{2+7 i}{5 i}$

Explore powers of i

$i=$	$i^{5}=$
$i^{2}=$	$i^{6}=$
$i^{3}=$	$i^{7}=$
$i^{4}=$	$i^{8}=$

Example 6: Simplify
a.) i^{28}
b.) i^{46}
c.) i^{33}
d.) i^{75}

