Example 1: Examine
a.) $\sqrt{9 \cdot 16}$ vs. $\sqrt{9} \cdot \sqrt{16}$
b.) $\sqrt{9+16}$ vs. $\sqrt{9}+\sqrt{16}$

Definition: (The product rule for radicals) For any real numbers $\sqrt[n]{a}$ and $\sqrt[n]{b}$, we have $\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a \cdot b}$ That is, the product of two $n$th roots is the $n$th root of the product of the two radicands.

Example 2: Multiply
a.) $\sqrt{5} \cdot \sqrt{6}$
b.) $\sqrt{x-4} \cdot \sqrt{x+4}$
c.) $\sqrt{2} \cdot \sqrt{8}$
d.) $\sqrt[3]{9} \cdot \sqrt[3]{3}$

Method: Using the product rule to simplify
$\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$ where $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are both real numbers

Example 3: Simplify $\sqrt{50}$ (The Jail Story)

Method: To simplify a radical expression with index $n$ by factoring
1.) Express the radicand as a product in which one factor is the largest perfect $n$th power possible.
2.) Take the $n$th root of each factor.
3.) Simplification is complete when no radicand has a factor that is a perfect $n$th power.

Example 4: Simplify
a.) $\sqrt{27}$
b.) $\sqrt[3]{40}$
c.) $\sqrt[4]{162}$
d.) $\sqrt{169 p^{4} r^{6}}$
e.) $\sqrt{81 y^{5}}$
f.) $\sqrt{32 x y^{2}}$
g.) $\sqrt[4]{32 z^{7}}$
h.) $\sqrt[3]{24 a^{9} b^{4}}$

Example 5: You try to simplify $\sqrt[3]{108 x^{14} y^{27} z^{34}}$

Example 6: Simplify $f(x)=\sqrt{2 x^{2}-8 x+8}$

Example 7: Multiply and simplify
a.) $\sqrt{10} \cdot \sqrt{14}$
b.) $\sqrt[3]{4} \cdot \sqrt[3]{20}$
c.) $\sqrt[4]{4 a^{3} b^{5}} \cdot \sqrt[4]{20 a^{2} b^{7}}$

