Definition: $a^{1 / n}=\sqrt[n]{a}$. When a is nonnegative, n can be any natural number greater than 1 . When a is negative, n must be odd.

Example 1: Write in radical notation and simplify.
a.) $x^{1 / 2}$
b.) $(-27)^{1 / 3}$
c.) $\left(365^{12}\right)^{1 / 2}$

Example 2: Write with exponential notation.
a.) $\sqrt[4]{7 a b}$
b.) $\sqrt[5]{\frac{3 x}{7 y}}$

Example 3: Graph $f(x)=\sqrt[4]{3 x-2}$ on your calculator.

Definition: (Positive rational exponents) For any natural numbers m and $n(n \neq 0)$ and any real number a for which $\sqrt[n]{a}$ exists, we have that $a^{m / n}$ means $(\sqrt[n]{a})^{m}$ or $\sqrt[n]{a^{m}}$

Example 4: Write in radical notation and simplify
a.) $8^{2 / 3}$
b.) $36^{3 / 2}$

Definition: (Negative rational exponents) For any rational number m / n and any nonzero real number a for which $a^{m / n}$ exists, we have that $a^{-m / n}$ means $\frac{1}{a^{m / n}}$.

Example 5: Write with positive exponents and simplify if possible.
a.) $49^{-1 / 2}$
b.) $(-27)^{-2 / 3}$
c.) $5 a^{-3 / 2} b^{4 / 3}$
d.) $\left(\frac{x}{y}\right)^{-3 / 5}$

Definition: (Laws of exponents) For any real numbers a and b and any rational exponents m and n for which a^{m}, a^{n}, and b^{m} are defined:
1.) $a^{m} \cdot a^{n}=a^{m+n} \quad$ In multiplying, add exponents if the bases are the same.
2.) $\frac{a^{m}}{a^{n}}=a^{m-n}$

In dividing, subtract exponents if the bases are the same. Assume $a \neq 0$.
3.) $\left(a^{m}\right)^{n}=a^{m \cdot n}$

To raise a power to a power, multiply the exponents.
4.) $(a b)^{m}=a^{m} b^{m} \quad$ To raise a product to a power, raise each factor to the power and multiply.

Example 6: Simplify (answers should have positive exponents)
a.) $5^{3 / 7} \cdot 5^{1 / 7}$
b.) $\frac{a^{1 / 6}}{a^{1 / 2}}$
c.) $\left(\pi^{3 / 4}\right)^{2 / 3}$
d.) $\left(r^{-1 / 4} b^{3 / 7}\right)^{1 / 3}$

Method: To simplify radical expressions
1.) Convert radical expressions to exponential expressions.
2.) Use arithmetic and the laws of exponents to simplify.
3.) Convert back to radical notation as needed.

Example 7: Simplify
a.) $\sqrt[4]{s^{12}}$
b.) $\left(\sqrt[5]{x^{2} y}\right)^{20}$
c.) $\sqrt[8]{(3 y)^{4}}$
d.) $\sqrt[3]{\sqrt{r}}$

