Rational Exponents (7.2)

Math 098

<u>Definition</u>: $a^{\frac{1}{n}} = \sqrt[n]{a}$. When *a* is nonnegative, *n* can be any natural number greater than 1. When *a* is negative, *n* must be odd.

Example 1: Write in radical notation and simplify.

a.)
$$x^{\frac{1}{2}}$$
 b.) $(-27)^{\frac{1}{3}}$ c.) $(365^{12})^{\frac{1}{2}}$

Example 2: Write with exponential notation.

a.)
$$\sqrt[4]{7ab}$$
 b.) $\sqrt[5]{\frac{3x}{7y}}$

Example 3: Graph $f(x) = \sqrt[4]{3x-2}$ on your calculator.

<u>Definition</u>: (Positive rational exponents) For any natural numbers *m* and *n* ($n \neq 0$) and any real number *a* for which $\sqrt[n]{a}$ exists, we have that $a^{\frac{m}{n}}$ means $(\sqrt[n]{a})^m$ or $\sqrt[n]{a^m}$

Example 4: Write in radical notation and simplify

a.)
$$8^{\frac{2}{3}}$$
 b.) $36^{\frac{3}{2}}$

<u>Definition</u>: (Negative rational exponents) For any rational number $\frac{m}{n}$ and any nonzero real number a for which $a^{\frac{m}{n}}$ exists, we have that $a^{-\frac{m}{n}}$ means $\frac{1}{a^{\frac{m}{n}}}$.

Example 5: Write with positive exponents and simplify if possible.

a.)
$$49^{-\frac{1}{2}}$$

b.) $(-27)^{-2/3}$

d.)
$$\left(\frac{x}{y}\right)^{-\frac{3}{5}}$$

<u>Definition</u>: (Laws of exponents) For any real numbers a and b and any rational exponents m and n for which a^m , a^n , and b^m are defined:

- **1.)** $a^m \cdot a^n = a^{m+n}$
- 2.) $\frac{a^m}{a^n} = a^{m-n}$
- 3.) $(a^m)^n = a^{m \cdot n}$

In multiplying, add exponents if the bases are the same. In dividing, subtract exponents if the bases are the same. Assume $a \neq 0$. To raise a power to a power, multiply the exponents.

. /

4.) $(ab)^m = a^m b^m$ To raise a product to a power, raise each factor to the power and multiply.

Example 6: Simplify (answers should have positive exponents)

a.)
$$5^{\frac{3}{7}} \cdot 5^{\frac{1}{7}}$$
 b.) $\frac{a^{\frac{1}{6}}}{a^{\frac{1}{2}}}$

c.)
$$\left(\pi^{\frac{3}{4}}\right)^{\frac{2}{3}}$$
 d.) $\left(r^{-\frac{1}{4}}b^{\frac{3}{7}}\right)^{\frac{1}{3}}$

Method: To simplify radical expressions

- 1.) Convert radical expressions to exponential expressions.
- 2.) Use arithmetic and the laws of exponents to simplify.
- 3.) Convert back to radical notation as needed.

Example 7: Simplify

a.)
$$\sqrt[4]{s^{12}}$$
 b.) $(\sqrt[5]{x^2y})^{20}$

c.) $\sqrt[8]{(3y)^4}$

d.) $\sqrt[3]{\sqrt{r}}$