\qquad of 9.
$(-3)^{2}=9$, so -3 is a \qquad
\qquad of 9.

Definition: The number c is a square root of a if $c^{2}=a$

Example 1: Find the square roots of 49.

Definition: The principle square root of a nonnegative number is its nonnegative square root. The symbol $\sqrt{ }$ is called a radical sign and is used to indicate the principal square root of a number over which it appears.

Example 2: Simplify
a.) $\sqrt{36}$
b.) $\sqrt{0.64}$
c.) $-\sqrt{121}$
d.) $\sqrt{40}$
e.) $\sqrt{\frac{25}{81}}$
\qquad -

Example 3: Let's graph $f(x)=\sqrt{x}$

Example 4: Consider the functions $f(x)=\sqrt{4-x}$ and $g(x)=-\sqrt{2 x-3}$.
a.) Evaluate $f(-5)$
b.) Evaluate $g(2)$
c.) What is the domain of f ?
d.) What is the domain of g ?

Example 5: Evaluate (carefully)
a.) $\sqrt{4^{2}}$
b.) $\sqrt{(-4)^{2}}$
c.) $\sqrt{a^{2}}$

Definition: For any real number $a, \sqrt{a^{2}}=|a|$. That is, the principal square root of a^{2} is the absolute value of a.

Example 6: Simplify
a.) $\sqrt{(x+3)^{2}}$
b.) $\sqrt{4 x^{2}-12 x+9}$
c.) $\sqrt{r^{12}}$
d.) $\sqrt{t^{10}}$

Example 7: Simplify, assuming the variables are non-negative
a.) $\sqrt{y^{6}}$
b.) $\sqrt{25 x^{2}-10 x+1}$

So far we have been strictly interested in squares and square roots. Now let's broaden our scope.
$3^{3}=27$, so 3 is a \qquad
\qquad of 27 .
$(-3)^{3}=-27$, so -3 is a \qquad
\qquad of -27 .

Definition: The number c is the cube root of a if $c^{3}=a$. In symbols, we write $\sqrt[3]{a}$ to denote the cube root of a.

Example 8: Let's graph $f(x)=\sqrt[3]{x}$

If $b^{n}=a$, then b is the \qquad
\qquad of a.

Example 9: Evaluate
a.) $\sqrt[3]{216}$
b.) $\sqrt[4]{81}$
c.) $\sqrt[3]{-64}$
d.) $-\sqrt[5]{-32}$
Perfect Cubes
e.) $\sqrt[4]{-81}$
f.) $\sqrt[5]{r^{5}}$
g.) $\sqrt[6]{x^{6}}$

Method: Simplifying $n^{\text {th }}$ roots

n	a	$\sqrt[n]{a}$	$\sqrt[n]{a^{n}}$
Even	Positive	Positive	$\|a\|$ (or $a)$
	Negative	Not a real number	$\|a\|$ (or $-a)$
Odd	Positive	Positive	a
	Negative	Negative	a

Now that we understand radicals, let's focus on radical functions - functions that can be described by radical expressions.

```
MATH NUM CPX PRB
1:- Frac
2: Dec
3:3
4:}\sqrt{3}{
5: *
6: fMin(
7\fMax(
```

Be very careful when entering roots into your calculator.

Example 10: Find the domain of the given functions algebraically, then use the graph to determine the range.
a.) $f(x)=\sqrt{-x}$

Domain	Range
Interval notation	Interval notation
inequality notation	set notation
set notation	inequality notation Domain Interval notation inequality notation
Interval notation	
set notation	inequality notation
set notation	

c.) $r(x)=\sqrt{x^{2}+1}$

Domain
 Range

Interval notation
inequality notation
set notation
set notation
d.) $s(x)=\sqrt[4]{5-2 x}$

Interval notation
inequality notation

Interval notation
inequality notation
set notation

Domain

Range

Interval notation
inequality notation
set notation

Example 11: Determine whether a radical function would be a good model (eye ball the model).
a.) The following table lists the average size of United States' farms for various years from 1940 to 2002

Year	Average Farm Size (in acres)
1940	175
1960	303
1980	426
1997	431
2002	441

b.) The following table lists the amount of federal funds allotted to the National Cancer Institute for cancer research in the United States from 2003 to 2007.

Year	Funds (in billions)
2003	4.59
2004	4.74
2005	4.83
2006	4.79
2007	4.75

