Radical Expressions, Functions, and Modeling (7.1)

Math 098

Example 3: Let's graph $f(x) = \sqrt{x}$

Example 4: Consider the functions $f(x) = \sqrt{4-x}$ and $g(x) = -\sqrt{2x-3}$.

- a.) Evaluate f(-5) b.) Evaluate g(2)
- c.) What is the domain of *f*?

d.) What is the domain of *g*?

Example 5: Evaluate (carefully)

a.) $\sqrt{4^2}$ b.) $\sqrt{(-4)^2}$ c.) $\sqrt{a^2}$

<u>Definition</u>: For any real number a, $\sqrt{a^2} = |a|$. That is, the principal square root of a^2 is the absolute value of a.

Example 6: Simplify

a.)
$$\sqrt{(x+3)^2}$$
 b.) $\sqrt{4x^2 - 12x + 9}$

c.)
$$\sqrt{r^{12}}$$
 d.) $\sqrt{t^{10}}$

Example 7: Simplify, assuming the variables are non-negative

a.)
$$\sqrt{y^6}$$
 b.) $\sqrt{25x^2 - 10x + 1}$

So far we have been strictly interested in squares and square roots. Now let's broaden our scope.

3³ = 27 , so 3 is a _____ of 27.

```
(-3)^3 = -27, so -3 is a _____ of -27.
```

<u>Definition</u>: The number *c* is the cube root of *a* if $c^3 = a$. In symbols, we write $\sqrt[3]{a}$ to denote the cube root of *a*.

Example 8: Let's graph $f(x) = \sqrt[3]{x}$

Method: Simplifying *n*th roots

n	а	$\sqrt[n]{a}$	$\sqrt[n]{a^n}$
Evon	Positive	Positive	<i>a</i> (or <i>a</i>)
Even	Negative	Not a real number	<i>a</i> (or - <i>a</i>)
044	Positive	Positive	а
Odd	Negative	Negative	а

Now that we understand radicals, let's focus on radical functions – functions that can be described by radical expressions.

Be very careful when entering roots into your calculator.

Example 10: Find the domain of the given functions algebraically, then use the graph to determine the range.

a.)
$$f(x) = \sqrt{-x}$$

Interval notation inequality notation set notation

Domain

b.) $g(x) = \sqrt{4x-3} - 2$

Interval notation

Domain

inequality notation

set notation

<u>Range</u>

Interval notation

inequality notation

set notation

Range

Interval notation

inequality notation

set notation

c.)
$$r(x) = \sqrt{x^2 + 1}$$

<u>Domain</u>	<u>Range</u>
Interval notation	Interval notation
inequality notation	inequality notation
set notation	set notation

d.) $s(x) = \sqrt[4]{5-2x}$

<u>Domain</u>	<u>Range</u>
Interval notation	Interval notation
inequality notation	inequality notation
set notation	set notation

Example 11: Determine whether a radical function would be a good model (eye ball the model).

a.) The following table lists the average size of United States' farms for various years from 1940 to 2002

b.) The following table lists the amount of federal funds allotted to the National Cancer Institute for cancer research in the United States from 2003 to 2007.

Year	Average Farm Size
	(in acres)
1940	175
1960	303
1980	426
1997	431
2002	441

Year	Funds (in billions)
2003	4.59
2004	4.74
2005	4.83
2006	4.79
2007	4.75