Chapter 7: Exponents and Radical Functions

- Understand basic roots including how to evaluate them by hand and using a calculator.
- Find the domain and range of a radical function (the latter part using the graph).
- Understand the relationship between rational exponents and roots.
- Understand how to add, subtract, multiply, and divide radical expressions.
- Understand how to rationalize the denominator (this includes the conjugate)
- Solve radical equations making sure to check for extraneous solutions.
- Understand complex numbers and how to perform basic arithmetic operations with them.

Chapter 8: Quadratics

- Methods to solve quadratic equations. Graphically, solving quadratic equations is synonymous to finding the zeros or x-intercepts of the function.
 - Factoring
 - The principle of square roots
 - Completing the square
 - The quadratic formula
 - The discriminant
- The vertex
 - The vertex of a quadratic is a point
 - If the graph of a quadratic equation is given by $f(x) = ax^2 + bx + c$ or

$$f(x) = a(x-h)^2 + k$$
, then the vertex is (h,k) or $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$

- The axis of symmetry is x = h or $x = -\frac{b}{2a}$
- Domain and range
 - The domain of the quadratic is all real numbers: $(-\infty, \infty)$
 - The range is either $(-\infty, k]$ or $[k, \infty)$ depending upon the concavity.

Review questions (tough ones from online): 5.7.37, 6.3.45, 6.4.45, 7.5.73, 7.6.49 and 51, 8.1.63, 8.2.19 and 31, 8.4.49 and 51.

Review questions (from chapter 6.4):

Example 1: Solve
$$\frac{1}{x-1} + \frac{1}{x+2} = \frac{5}{4}$$
 Example 1: Solve $\frac{1}{x-1} + \frac{1}{x+2} = \frac{5}{4}$ Example 1: Solve $\frac{1}{x-1} + \frac{1}{x-1} = \frac{5}{x-1} = \frac{5}{x-1} = \frac{5}{x-1} = \frac{5}{x-1} = \frac{5}{x-1} = \frac{5}{$

ple 1: Solve
$$\frac{1}{x-1} + \frac{1}{x+2} = \frac{5}{4}$$
 Example 2: Solve $\frac{10}{x} - \frac{12}{x-3} + 4 = 0$

$$\Rightarrow 4(x+2) + 4(x-1) = 5(x-1)(x+2)$$

$$\Rightarrow 6x + 4 = 5x^2 + 5x - 10$$

$$\Rightarrow 5x^2 - 3x - 14 = 0$$

$$\Rightarrow (5x + 7)(x - 2) = 0$$

$$\Rightarrow (5x + 7)(x - 2) = 0$$

$$\Rightarrow (2x + 3)(x - 5) = 0$$

$$\Rightarrow x = -\frac{7}{5} \text{ and } \text{ Page 3 of 4}$$

$$\Rightarrow x = -\frac{3}{5} \text{ and } x = 5$$

Example 3: Solve
$$\frac{x^2}{x+100} = 50$$

$$420 = x + 100$$

$$3 x^2 = 50(x + 100)$$

$$3 x^2 = 50x = 500 = 0$$

3 (X-100) (X+50) = 0

Example 4:
$$\frac{1}{x-1} - \frac{2}{x^2} = 0$$

LCD = $x^2 (x-1)$
 $\Rightarrow x^2 - 2(x-1) = 0$
 $\Rightarrow x^2 - 2x + 2 = 0$
 $\Rightarrow x = \frac{2 \pm \sqrt{4 - 4(1)(2)}}{2(1)}$

HD real solution.

-) x = -4 ac x = /2

Example 5: Solve
$$\frac{x+5}{x-2} = \frac{5}{x+2} + \frac{28}{x^2-4}$$

$$\frac{3}{X-2} = \frac{5}{X+2} + \frac{28}{(x+2)(x-2)}$$

$$\Rightarrow (X+5)(x+2) = 5(x-2) + 28$$

$$\Rightarrow x^{2} + 7x + 10 = 5x - 10 + 28$$

$$\Rightarrow x^{2} + 2x - 8 = 0$$

$$\Rightarrow (x+4)(x-2) = 0$$

Example 6: Solve
$$\frac{x}{2x+7} - \frac{x+1}{x+3} = 1$$

 $(-1) = (2x+7)(x+3)$
 $\Rightarrow (x+3) - (x+1)(2x+7) = (x+3)(2x+7)$
 $\Rightarrow (x+3) - (x+2) = (x+3)(2x+7)$
 $\Rightarrow (x+3) - (x+3) = (x+3)(2x+7)$
 \Rightarrow