Review

Concept Check

- 1. (a) What is a convergent sequence?
 - (b) What is a convergent series?
 - (c) What does $\lim_{n\to\infty} a_n = 3$ mean?
 - (d) What does $\sum_{n=1}^{\infty} a_n = 3$ mean?
- 2. (a) What is a bounded sequence?
 - (b) What is a monotonic sequence?
 - (c) What can you say about a bounded monotonic sequence?
- 3. (a) What is a geometric series? Under what circumstances is it convergent? What is its sum?
 - (b) What is a p-series? Under what circumstances is it convergent?
- **4.** Suppose $\sum a_n = 3$ and s_n is the *n*th partial sum of the series. What is $\lim_{n\to\infty} a_n$? What is $\lim_{n\to\infty} s_n$?
- 5. State the following.
 - (a) The Test for Divergence
 - (b) The Integral Test
 - (c) The Comparison Test
 - (d) The Limit Comparison Test
 - (e) The Alternating Series Test
 - (f) The Ratio Test
 - (g) The Root Test
- 6. (a) What is an absolutely convergent series?
 - (b) What can you say about such a series?
 - (c) What is a conditionally convergent series?
- 7. (a) If a series is convergent by the Integral Test, how do you estimate its sum?
 - (b) If a series is convergent by the Comparison Test, how do you estimate its sum?

- (c) If a series is convergent by the Alternating Series Test, how do you estimate its sum?
- 8. (a) Write the general form of a power series.
 - (b) What is the radius of convergence of a power series?
 - (c) What is the interval of convergence of a power series?
- **9.** Suppose f(x) is the sum of a power series with radius of convergence R.
 - (a) How do you differentiate f? What is the radius of convergence of the series for f'?
 - (b) How do you integrate f? What is the radius of convergence of the series for $\int f(x) dx$?
- **10.** (a) Write an expression for the nth-degree Taylor polynomial of f centered at a.
 - (b) Write an expression for the Taylor series of f centered at a.
 - (c) Write an expression for the Maclaurin series of f.
 - (d) How do you show that f(x) is equal to the sum of its Taylor series?
 - (e) State Taylor's Inequality.
- 11. Write the Maclaurin series and the interval of convergence for each of the following functions.
 - (a) 1/(1-x)
- (b) e^x
- (c) $\sin x$
- (d) $\cos x$
- (e) $tan^{-1}x$
- (f) $\ln(1 + x)$
- **12.** Write the binomial series expansion of $(1 + x)^k$. What is the radius of convergence of this series?

True-False Quiz

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

- **1.** If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ is convergent.
- **2.** The series $\sum_{n=1}^{\infty} n^{-\sin n}$ is convergent.
- 3. If $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} a_{2n+1} = L$.
- **4.** If $\sum c_n 6^n$ is convergent, then $\sum c_n (-2)^n$ is convergent.
- **5.** If $\sum c_n 6^n$ is convergent, then $\sum c_n (-6)^n$ is convergent.
- **6.** If $\sum c_n x^n$ diverges when x = 6, then it diverges when x = 10.
- 7. The Ratio Test can be used to determine whether $\sum 1/n^3$ converges.
- **8.** The Ratio Test can be used to determine whether $\sum 1/n!$ converges.
- **9.** If $0 \le a_n \le b_n$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

- **10.** $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e}$
- 11. If $-1 < \alpha < 1$, then $\lim_{n\to\infty} \alpha^n = 0$.
- **12.** If $\sum a_n$ is divergent, then $\sum |a_n|$ is divergent.
- **13.** If $f(x) = 2x x^2 + \frac{1}{3}x^3 \cdots$ converges for all x, then f'''(0) = 2.
- **14.** If $\{a_n\}$ and $\{b_n\}$ are divergent, then $\{a_n + b_n\}$ is divergent.
- **15.** If $\{a_n\}$ and $\{b_n\}$ are divergent, then $\{a_nb_n\}$ is divergent.
- **16.** If $\{a_n\}$ is decreasing and $a_n > 0$ for all n, then $\{a_n\}$ is convergent.
- 17. If $a_n > 0$ and $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges.

803

20. If
$$\lim_{n\to\infty} a_n = 2$$
, then $\lim_{n\to\infty} (a_{n+3} - a_n) = 0$.

21. If a finite number of terms are added to a convergent series, then the new series is still convergent.

22. If
$$\sum_{n=1}^{\infty} a_n = A$$
 and $\sum_{n=1}^{\infty} b_n = B$, then $\sum_{n=1}^{\infty} a_n b_n = AB$.

Exercises

1-8 Determine whether the sequence is convergent or divergent. If it is convergent, find its limit.

1.
$$a_n = \frac{2 + n^3}{1 + 2n^3}$$

2.
$$a_n = \frac{9^{n+1}}{10^n}$$

3.
$$a_n = \frac{n^3}{1 + n^2}$$

4.
$$a_n = \cos(n\pi/2)$$

$$5. \ a_n = \frac{n \sin n}{n^2 + 1}$$

6.
$$a_n = \frac{\ln n}{\sqrt{n}}$$

7.
$$\{(1 + 3/n)^{4n}\}$$

8.
$$\{(-10)^n/n!\}$$

- **9.** A sequence is defined recursively by the equations $a_1 = 1$, $a_{n+1} = \frac{1}{3}(a_n + 4)$. Show that $\{a_n\}$ is increasing and $a_n < 2$ for all n. Deduce that $\{a_n\}$ is convergent and find its limit.
- 10. Show that $\lim_{n\to\infty} n^4 e^{-n} = 0$ and use a graph to find the smallest value of N that corresponds to $\varepsilon = 0.1$ in the precise definition of a limit.

11-22 Determine whether the series is convergent or divergent.

11.
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

12.
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$$

13.
$$\sum_{n=1}^{\infty} \frac{n^3}{5^n}$$

14.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

15.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

$$16. \sum_{n=1}^{\infty} \ln \left(\frac{n}{3n+1} \right)$$

17.
$$\sum_{n=1}^{\infty} \frac{\cos 3n}{1 + (1.2)^n}$$

18.
$$\sum_{n=1}^{\infty} \frac{n^{2n}}{(1+2n^2)^n}$$

19.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{5^n n!}$$

20.
$$\sum_{n=1}^{\infty} \frac{(-5)^{2n}}{n^2 9^n}$$

21.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+1}$$

22.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$

23-26 Determine whether the series is conditionally convergent, absolutely convergent, or divergent.

23.
$$\sum_{n=1}^{\infty} (-1)^{n-1} n^{-1/3}$$

24.
$$\sum_{n=1}^{\infty} (-1)^{n-1} n^{-3}$$

25.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1) 3^n}{2^{2n+1}}$$

26.
$$\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{\ln n}$$

27-31 Find the sum of the series.

27.
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{3n}}$$

28.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$

29.
$$\sum_{n=1}^{\infty} \left[\tan^{-1}(n+1) - \tan^{-1} n \right]$$

30.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^n}{3^{2n} (2n)!}$$

31.
$$1-e+\frac{e^2}{2!}-\frac{e^3}{3!}+\frac{e^4}{4!}-\dots$$

- **32.** Express the repeating decimal 4.17326326326... as a fraction.
- **33.** Show that $\cosh x \ge 1 + \frac{1}{2}x^2$ for all x.
- **34.** For what values of x does the series $\sum_{n=1}^{\infty} (\ln x)^n$ converge?
- **35.** Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{s}}$ correct to four decimal places.
- **36.** (a) Find the partial sum s_5 of the series $\sum_{n=1}^{\infty} 1/n^6$ and estimate the error in using it as an approximation to the sum of the series.
 - (b) Find the sum of this series correct to five decimal places.
- 37. Use the sum of the first eight terms to approximate the sum of the series $\sum_{n=1}^{\infty} (2 + 5^n)^{-1}$. Estimate the error involved in this approximation.
- **38.** (a) Show that the series $\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$ is convergent.
 - (b) Deduce that $\lim_{n\to\infty} \frac{n^n}{(2n)!} = 0$.
- **39.** Prove that if the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, then the series

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right) a_n$$

is also absolutely convergent.

40-43 Find the radius of convergence and interval of convergence of the series.

40.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n^2 5^n}$$

41.
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n \, 4^n}$$

42.
$$\sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{(n+2)!}$$

43.
$$\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$$

44. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^n$$

45. Find the Taylor series of $f(x) = \sin x$ at $a = \pi/6$.

46. Find the Taylor series of $f(x) = \cos x$ at $a = \pi/3$.

47-54 Find the Maclaurin series for f and its radius of convergence. You may use either the direct method (definition of a Maclaurin series) or known series such as geometric series, binomial series, or the Maclaurin series for e^x , $\sin x$, $\tan^{-1}x$, and $\ln(1 + x)$.

47.
$$f(x) = \frac{x^2}{1+x}$$

48.
$$f(x) = \tan^{-1}(x^2)$$

49.
$$f(x) = \ln(4 - x)$$

50.
$$f(x) = xe^{2x}$$

51.
$$f(x) = \sin(x^4)$$

52.
$$f(x) = 10^x$$

53.
$$f(x) = 1/\sqrt[4]{16 - x}$$

54.
$$f(x) = (1 - 3x)^{-5}$$

P

55. Evaluate $\int \frac{e^x}{x} dx$ as an infinite series.

56. Use series to approximate $\int_0^1 \sqrt{1+x^4} dx$ correct to two decimal places.

57-58

(a) Approximate f by a Taylor polynomial with degree n at the number a.

 \bigcap (b) Graph f and T_n on a common screen.

(c) Use Taylor's Inequality to estimate the accuracy of the approximation $f(x) \approx T_n(x)$ when x lies in the given interval.

(d) Check your result in part (c) by graphing $|R_n(x)|$.

57.
$$f(x) = \sqrt{x}$$
, $a = 1$, $n = 3$, $0.9 \le x \le 1.1$

58.
$$f(x) = \sec x$$
, $a = 0$, $n = 2$, $0 \le x \le \pi/6$

59. Use series to evaluate the following limit.

$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$

60. The force due to gravity on an object with mass m at a height h above the surface of the earth is

$$F = \frac{mgR^2}{(R+h)^2}$$

where R is the radius of the earth and g is the acceleration due to gravity for an object on the surface of the earth.

(a) Express F as a series in powers of h/R.

(b) Observe that if we approximate F by the first term in the series, we get the expression $F \approx mg$ that is usually used when h is much smaller than R. Use the Alternating Series Estimation Theorem to estimate the range of values of h for which the approximation $F \approx mg$ is accurate to within one percent. (Use R = 6400 km.)

61. Suppose that $f(x) = \sum_{n=0}^{\infty} c_n x^n$ for all x.

(a) If f is an odd function, show that

$$c_0=c_2=c_4=\cdots=0$$

(b) If f is an even function, show that

$$c_1=c_3=c_5=\cdots=0$$

62. If $f(x) = e^{x^2}$, show that $f^{(2n)}(0) = \frac{(2n)!}{n!}$.

CHAPTER 11 REVIEW PAGE 802

True-False Quiz

1. False **3**. True 5. False 7. False 9. False 11. True

13. True False **17.** True

19. True **21**. True

Exercises

3. D **5.** 0 **7.** e^{12} **9.** 2 **11.** C 15. D 17. C 19. C 21. C 23. CC

27. $\frac{1}{11}$ **29.** $\pi/4$ **31.** e^{-e} **35.** 0.9721

37. 0.18976224, error $< 6.4 \times 10^{-7}$

41. 4, [-6, 2) **43.** 0.5, [2.5, 3.5)

45. $\frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left[\frac{1}{(2n)!} \left(x - \frac{\pi}{6} \right)^{2n} + \frac{\sqrt{3}}{(2n+1)!} \left(x - \frac{\pi}{6} \right)^{2n+1} \right]$

47. $\sum_{n=0}^{\infty} (-1)^n x^{n+2}$, R=1 **49.** $\ln 4 - \sum_{n=1}^{\infty} \frac{x^n}{n \cdot 4^n}$, R=4

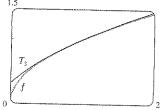
51. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{8n+4}}{(2n+1)!}, R = \infty$

* 53. $\frac{1}{2} + \sum_{n=1}^{\infty} \frac{1 \cdot 5 \cdot 9 \cdot \cdots \cdot (4n-3)}{n! 2^{6n+1}} x^n, R = 16$

55. $C + \ln |x| + \sum_{n=1}^{\infty} \frac{x^n}{n \cdot n!}$

57. (a) $1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3$

(c) 0.000006



PROBLEMS PLUS PAGE 805

1. 15!/5! = 10,897,286,400

3. (b) 0 if x = 0, $(1/x) - \cot x$ if $x \neq k\pi$, k an integer 5. (a) $s_n = 3 \cdot 4^n$, $l_n = 1/3^n$, $p_n = 4^n/3^{n-1}$ (c) $\frac{2}{5}\sqrt{3}$ 9. (-1, 1), $\frac{x^3 + 4x^2 + x}{(1-x)^4}$

11. $\ln \frac{1}{2}$ **13.** (a) $\frac{250}{101}\pi(e^{-(n-1)\pi/5}-e^{-n\pi/5})$ (b) $\frac{250}{101}\pi$

19. $\frac{\pi}{2\sqrt{3}} - 1$

21. $-\left(\frac{\pi}{2} - \pi k\right)^2$ where k is a positive integer