Group Quiz 2

Dusty Wilson

Math 153 – Spring 2012

Name:	KEY

No work = no credit

1.) Show that the line given by $\bar{r}(t) = \langle t, 3t - 2, -t \rangle$ intersects the plane x + y + z = 1. Find the point of intersection. Find the angle beauteen.

$$\vec{p} \cdot \vec{p} = 3$$

$$\Rightarrow$$
 $\theta = \operatorname{ancc}_{s}\left(\frac{3}{\sqrt{33}}\right)$

2.) Consider the plane x + y + z = 0. Give three distinct points with integer coordinates that lie on this plane and are not co-linear. Then find the area of the triangle formed by those three points.

$$A(1,1,-2)$$
 $B(0,1,-1)$
 $V = (1,0-1)$
 $C(1,0,-1)$
 $V = (1,0)$

| uxv = 13 (area of a parallelogram)

triangle area

3.) Consider the diagram below and use it to give component representations of each vector.

a.)
$$\bar{a} = \langle -\bar{n}, \bar{n}, \bar{n} \rangle$$

c.)
$$\vec{a} \times \vec{b} = \langle 0, 0, -4 \rangle$$

d.)
$$\vec{a} + \vec{b} = \langle \omega, 2\sqrt{z}, 0 \rangle$$

e.)
$$(\bar{a} + \bar{b}) \bullet (\bar{a} \times \bar{b})$$

f.)
$$(\vec{a} + \vec{b}) \times (\vec{a} \times \vec{b}) = \langle -8\sqrt{3}, 0 \rangle$$