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CHAPTER

Linear Transformations

introduction to Linear Transformations and Their Inverses

Imagine yourself cruising in the Mediterranean as a crew mesmber on a French
coast guard boat, looking for evildoers. Periodically, your boat radios its position t¢
headquarters in Marseille. You expect that communications will be intercepted. So.
before you broadcast anything, you have to transform the actual position of the boat

]

L

(x, for Eastern longitude; xz for Northern latitude), into an encoded position
_ [)}1]
yz

yi= x1+3x
yr = 2xy + 3x9.

You use the following code:

For example, when the actual position of your boat is 5° E, 42° N, or

)? _ X1 - 5
- X2 - 4217
vour encoded position will be '

. (y; T #3x] [ 54342 7 _ [;311
r= Lyz] 2%+ 5% T2-545.42] 0 [220]°
{See Figure 1.)
The coding transformation can be represented as

Y| ] A1 -+ 3x2 N I 3 ix
vl 12 +5%] 0 12 5] [xl
~—— S S e
¥ A 7
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encoded position

-

actual position

HEH

Figurs |

or, more succinctly, as

¥ =A%
The matrix A is called the (coefficient) matrix of the transformation.
A transformation of the form

y = AX

is called a linear transformation. We will discuss this important concept in greater
detail later in this section and throughout this chapter.
As the ship reaches a new position, the sailor on duty at headquarters in Marseille
receives the encoded message
i = {133} .
223

He must determine the actual position of the boat. He will have to solve the linear
system

A¥ = b,
or, more exphicitly,
x|, + 3X2 =133
le + SXZ = 223"

Here is his solution. Is it correct?

R 47
==l

As the boat travels on and dozens of positions are radioed in, the sailor gets a
little tired of solving all those linear systems, and he thinks there must be a general
formula to simplify the task. He wants to solve the system

X+ 3xy = yli

201 + 52 = |

when y; and yy are arbitrary constants, rather than particular numerical valees, He
is looking for the decoding transformation

- -
V=,
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which is the inverse® of the coding transformation

X ¥

The method of finding this solution is nothing new. We apply elimination as we
have for a linear system with known values y| and yq:

L xy +3x02=mn — 'M"i“ 3Im= N | —
o+ sm= | 2@ | —x=-2wawl D
X + 3= »n =30 {xg =3y -+ 3
Xy =2y — W i 1 Xp= 2y — ¥

The formula for the decoding transformation is

xy = =5y + 3yz,
= 2y — ¥

or
-5 3]

X = By, whereB:\l 2 1)

Note that the decoding transformation is linear and that its coefficient matrix is

s=3 ]

The relationship between the two matrices A and B is shown in Figure 2.

1
Coding, with matrix A = E gj

¥
Decoding, with matrix 5§ = ('—5 3—%
L2k

e

Figure 1

Since the decoding transformation X = BY is the inverse of the coding trans-':
formation ¥ = AX, we say that the matrix B is the inverse of the matrix A. We can
write this as B = A™L. s

Not all linear transformations

MR

are invertibie. Suppose some ignorant officer choases the code

yr= X+ 2%

. . 1 2
Vo = 2x; + 4x, with matrix A = { }

2 4

_ for the French coast guard boats. When the sailor in Marseille has to decode &
;I position, for example, o

: 7 {89}’ g

= 1178

I'We will discuss the concept of the inverse of a transformation more systemagically in Section 24
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he will be chagrined to discover that the system

x1 4+ 2x;, = 89
2xi +4dx, =178
has infinitely many solutions, namely,
k] [89 -2t
EI N A

where ¢ is an arbitrary number.

Because this system does not have a unique solution, it is impossible to recover
the actual position from the encoded position: The coding transformation and the
coding matrix A are noninvertible. This code is useless!

Now let us discuss the important concept of linear transformations in greater
detail. Since linear transformations are a special class of functions, it may be helpful
to review the concept of a function first.

Consider two sets X and Y. A function T from X to ¥ is a rule that associates
with each element x of X a unique clement y of Y. The set X is called the domain
of the function, and ¥ is its target space. We will sometimes refer to x as the input
of the function and to v as its output. Figure 3 shows an example where domain X
and target space Y are finite.

T

X ‘ '_Y
LTS

Flgurse 3 Domain X and target
space ¥ of a function T.

In precalculus and calculus, you studied functions whose input and output are
scalars (1.e., whose domain and target space are the real numbers R or subsets of R);
for example,

-1
In muitivariable calculus, you may have encountered functions whose input or output
WETE Veclors.

2
y=x  fa)=¢, g(r>=i

y_-xl +Az -{—x3

This formula defines a function from the vector space R? to R. The input is the

Xi
vector X = | Xy |, and the output is the scalar y. -
X3
cos(t)
7= sin(f)

i

This formula defines a function from R to the vector space R, with input ¢ and
output 7. o
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Definition 2.1.1

EXAMPLE 3

We now return to the topic of linear transformations.

Linear transformations®

A function T from R™ to R" is called a linear transformation if there existsann X m
matrix A such that

T(¥) = AX,

for all ¥ in the vector space R™.

It is important to note that a linear transformation is a special kind of function.
The input and the output are both vectors. If we denote the output vector T'(X) by ¥,
we can write '

7 = AX.

Let us write this equation in terms of its components:

¥1 a1y 4an im X1 apxy + appxz 40+ QimXm
y2 ap an aan | | X2 azn Xy + anxy - 4 mIm

— = :
¥n dn1 dp2 Qpm Xin Gnixy + Gxe b b GppXm

or

y1 = anX1 + daipxa + - dim¥m
y2 = apiXi + anxz + -+ dundm

Vo = i Xy + dpaXy Ao + dumXm-

The output variables y; are linear functions of the input variables x;. In some
branches of mathematics, a first-order function with a constant term, such as
y = 3xp ~ Tx2 + 5x3 -+ 8, is called linear. Not so in linear algebra: The linear func-
tions of m variables are those of the form y = cjx; + X2 + - 4 CppXm, TOr SOME
coefficients ¢, ¢2, . . . , Cn;- By cONtrast, a function such as ¥ == 3x; — 7xz + 5x3 +8
is called affine.

The linear fransformation

v =Tx1 + 3x3 ~— 9x3 + 8x4
Vi = 6x1 + 2xp — Rx3 + Txa
ya = 8x; + 4x2 + Txy

{a function from R* to R3) is represented by the 3 x 4 matrix

73 -9 8 :
Aw=16 2 -8 7. ’
g 4 0o 7]

2This is one of several possible definitions of a linear transformation; we could just as well have
chosen the statement of Theorem 2.1.3 as the definition {as many fexts do). This wiil be a [ECULTing
theme in this text: Most of the cenral concepts of linear algebra can be charactertzed in two of Mo
ways. Each of these characterizations can seTve as a possible definition; the ather characterizations
will then be stated as theorems, since we need to prove that they are equivalent to the chosen
definition. Among these multiple characterizations, there 1s no “correct” definition (although
mathematicians may have their favorite). Each characterization will be best suited for certain puiposs
and problems, while it is inadequate for athers.
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EXAMPLE 4  The coefficient matrix of the identity transformation
» =X
Y= A2
Vi = Xn

(a linear transformation from R" o R" whose output equals its input) is the n x 1

matrix
1 0 0
0 i 01
0 0 1

All entries on the main diagonal are I, and all other entries are 0. This matrix is
called the identiry matrix and is denoted by I,

1 0 0
[2:{1 OW I3m[0 1 0!, andsoon

0 1 0 0 1

We have already seen the identity matrix in other contexts. For example, we
nave shown that a linear system AX = b of n equations with n unknowns has a
unique solution if and only if rref(4) = 1. {(See Theorem 1.3.4.)

EXAMPLE 5 Consider the letter L (for Linear?) in Figure 4, made up of the vectors ltg)} and {(2)] .

Show the effect of the linear transformation

TG = [‘f ‘"“(1)] !

on this letter, and describe the transformation in words.

Solution
We have

Figure 4

Figura §
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EXAMPLE 6

The I is rotated through an angle of 90° in the counterclockwise direction.

: . . . " X
Let’s examine the effect of transformation T on an arbitrary vector x = Ll] :

2
-~ _ |0 -1 . [0 =1ilxi} _ (=%
ro=[) Toe=[0 Sl
We observe that the vectors X and T(¥) have the same length,

\fx12+x§ = ¢/ (~x2)? + 1%, '

and that they are perpendicular to one another, since the dot product equals zero (see
Definition A.8 in the appendix):

X T(.;E) == rﬂl . E—AQ} = —XjX2 + XXy = 0.

X
Paying attention to the signs of the components, we Se& thatif ¥ is in the first quadrant’.
. » - —x2] . .
(meaning that x; and x; are both positive), then T(x) = [ xl‘j is in the second +
. !

quadrant. See Figure 6.

N
T(F) = %_;12

Figure &

We can conclude that T (¥) is obtained by rotating vector ¥ through an angle 0

. e . ) " L
90° in the counterclockwise direction, as in the special cases X = O} and x = {2

considered earlier. (Check that the rotation is indeed counterclockwise when X is i
the second, third, or fourth guadrant.)

Consider the linear transformation T'(¥) = AX, with

12 3
A=14 5 6
7 89
Find
1 0
70| and T |0i,
0 1
1 1

where for simplicity we write T | 0| instead of T 0
0 0




Theorem 2.1.2
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Solution
A straightforward computation shows that

FRERR
B

1 0
Note that T [0} is the first column of the matrix A and that 7 ‘:O}

Ln

and

o0 W b

=R

| ——————

| aa—— |

=

—
il

column. )] 1

We can generalize this observation:

The columns of the matrix of a linear transformation
Consider a linear transformation T from K™ to R™. Then, the matrix of T is

O
| l | 0
=T ¢ T e T r;m s -jj = .
A (e} Tlez) (&) where ¢ N
i ! l : 5
_0_
To justify this result, write
P
A= U U2 -
.
Then
o]
[ i 0
T(&) = Aé = |U; Dy ¥; U = Ui,
Lo BRE
.«0—«

by Theorem 1.3.8.
The vectors ey, é2, . .., én, in the vector space R™ are sometimes referred to as

the standard vectors in R™. The standard vectors 21, 61, 03 in R® are often denoted
by i, k.
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EXAMPLE 7 Consider a linear iransformation T (£) = AX from R” to R”.

a. What is the refationship between T(3), T{(w), and T(% + ), where v and

i are vectors in R™?
b. What is the relationship between T ( 7) and T (kv), whe
and k is a scalar?

re 7 is a vector in R™

Solution
a. Applying Theorem 1.3.10, we find that

T+ i) = A + w) :_A"ﬁ + A =T @) + TG).

In words, the transform of the sum of two vectors equals the sum of the:

transforms.
b. Again, apply Theorem 1.3.10:

T (k) = AU} = kAT = kT (D).

s, the transform of a scalar multiple of a vecter is the scalar multiple

In word
]

of the transform.

o properties in the case of the linear transformation

Figure 7 illustrates these tw
tor through an angle of 90° in the counterciockwise

T from ®? to R* thatrotates a vec
direction. (Compare this with Example 5.)

boor T(ki) = kT(Q)K

T(H + @) = T}

TEﬁ) + T} & { V\F
T(#)

=1

{a) (b

Figure 7 {a) Hiustrating the property T+ o) = T(0) - TGh).
(b) Tilustrating the property T (kT) = kT (D).

near transformation satisfies the two equations
= kT (v). Now we will show that the converse
that satisfies these two equation

In Example 7, we saw that a i
T(H+w) =T+ T (i) and T (k¥
is true as well: Any transformation from R™ o R"
is a linear transformation.

Theorem 2.1.3 Linear cransformations
A sransformation T from R™ to &" is linear if (and only i)

. a. TE+w)=T@+ T (), for all vectors 7 and w in R™, and
b. T(kD) = kT (1), for ali vectors 7 in B™ and all scalars k.

Proof In Example 7, we saw that a linear transformation satisfles the equations 11 4 .
to R thd

and (b). To prove the converse, consider a transformation 7' from g
satisfies equations (a) and (b). We must show that there exists a matrix A such that

P
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T(¥) = AX, for all X in the vector space R™. Let 2y, . .., én be the standard vectoss
introduced in Theorem 2.1.2.

X1
- X2 - o -
TE =T} .| =Tlyer+xe+- - + Xiu€m)
Xm
= T(ui1) + T(8a) + - + T{xmém)  (by property a)
= TED + x2T @) + -+ xnT(en) (by property b)

L .
X2

— TG T@) - T@w|| . | =A%

Here is an example illustrating Theorem 2.1.3

W AMPLE 8 Consider a linear transformation 7' from R? to B? such that T(§) = 3, and
T (Ty) = 21, for the vectors 7, and 7, sketched in Figure 8. On the same axes,
sketch T (%), for the given vector X, Explain your solution.

Solution
Using a parallelogram, we can represent 7 as a linear combination of Uy and U, as
shown in Figure 9

X = 101+ et

By Theorem 2.1.3,
TG) = T(eids + i) = aTE) +aT () = jal + 200

The vector ¢; 7 is cut in haif, and the vector 372 is doubled, as shown in Figuore 10.

3
i 4 20y T(E)
vy
i ea¥lz
A ﬁ‘_,,_ ! %C‘g"‘jz
Figura § Figure 9 Figure 8

_ Imagine that vector % is drawn on a rubber sheet. Transformation T expands
) this sheet by a factor of 2 in the #,-direction and contracts it by a factor of 2 in the
it _ 7, ~direction. (We prefer “contracts by a factor of 2" to the awkward “expands by a

i factor of —12-.")
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EXERCISES 2.1

GOAL Use the concept of a linear transformation in
terms of the formula y = AX,and interpret simple linear
transformations geometricaily. Find the inverse of a lin-
ear transformation from R? to R (if it exists). Find the
matrix of a linear transformation column by column.

Consider the transformations from R} to B® defined in
Exercises 1 through 3. Which of these transformations are

linear?
oy = =3

1. vy =2x2 2.5v1 = 2xa
yy =X+ 2 y1 = 3x3 vy = X3X3
v3 = 2x7 V3 = Xy y3 = X) - X2

:4/‘, Find the matrix of the linear transformation
y1 = Gx1 -+ 3xz — 3x3
yp = 2x1 —9xz + 23
y3 = dxp — By — 2x3
yg =31+ xz b 5x3.

5. Consider the linear transformation T from R 10 R? with
1 0
-1 -
0 0

and T

._..
f

Find the matrix A of T.
C@ Consider the transformation T from B2 1o R given by
H 4

T B} =x 2] +x2 |5
: 3 6
1s this transformation linear? If so, find its matrix.

7. Suppose Dy, U3, ..., Up are arbiirary vectors in B",
Consider the transformation from R™ to R” given by

X1
X2 . _
T .t =x0; b xvz-b e T Xm U
Xm
Is this transformation linear? If s0, find its matrix A in

terms of the vectors 0y, 92, . ... Um.

@Find the inverse of the linear transformation

yp= xp+ Txz

yg = 3x1 + 20x2.
In Exercises 9 through 12, decide whether the given matvix
is invertible. Find the inverse if it exists. In Exercise 12,
the constant k is arbitrary.

23 @k

’% @ Prove the following facts:

)

12
11, [3 9}

a. The 2 % 2 matrix

oy

is invertible if and only if ad — be # 0. (Hint: Con
sider the cases a 3 0 and @ = 0 separately.)

b, If
a b
¢ d
is invertible, then

a b7 1 d —b
c d ad—bc e aj’

[The formula in part (b) is worth memorizing. }
@ a. For which values of the constant k is the matrix.
& 2 3%, .
mvertible?

5 k
b. For which values of the constant k are all entries of

F 3} -
tegers?

3k
(See Exercise 13.}

15. For which values of the consiants ¢ and b is the matrix

a=lp

invertible? What is the inverse in this case? (Sec Exer-
cise 13.)

Give a geometric interpretation of the linear transforma-
tions defined by the matrices in Exercises 16 through 23.
Show the effect of these transformations on the letter L
considered in Example 5. In each case, decide whether the
transformation is invertible. Find the inverse if it exists,
and interpret it geometrically. See Exercise 13.

30 -1 0 ps Ol
& {0 3} 17 [ 0 —1} 18. [ 0 G.SJ

10 o 1 0 1
@{o 0} @{1 o} 2. [»_1 0}

oo 0 2
@) 1 >[5
Consider the circular fitce in the accompanying figure. F v
each of the matrices A in Exercises 24 through 30, drav.

a sketch showing the effect of the linear transformation
T{¥) = AX on this face.
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33.
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. In Chapter 1, we mentioned that an old German bill

shows the mirror image of Gauss’s likeness, What linear
ransformation T° can you apply to get the actual picture
back?

Y

Find an n x n matrix A such that AX = 3%, for all X
in R”.

Consider the transformation T from R? to R that rotates
any vector X through an angle of 45° in the counterctock-
wise direction, as shown in the following figure:

T(%)

45°¢

L3

You are told that T is a linear transformation. (This will
be shown in the next section.) Find the matrix of T

@ﬂl Consider the transformation T from R? to B that rotates

any vector ¥ through a given angle 0 in the counterclock-
wise direction. (Compare this with Exercise 33.) You are
told that T is Hoear. Find the matrix of T in terms of 4.

In the example about the French coast guard in this sec-
tion, suppose you are a spy watching the boat and listen-
ing in on the radio messages from the boat. You coellect
the following data:

oI5 . [89
¢ When the actual position is { 42},they radio LSZ]

introduction to Linear Transformations and Their Inverses
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, .. 6] . 88
e When the actual position is L“_E , they radio [53} .
Can you crack their code (i.e., find the coding matrix),
assuming that the code is linear?

A -
T{ 36iLet T be a linear transformation from B2 10 B2, Let #;.

37,

39.

2, and 1w be three vectors in &2, as shown below. We
are told that 7{01{} = ¢ and T {7} == 3v2. On the same
axes, sketch T'(1).

i
iy

/UI

Consider a linear transformation T from R? to R?. Sup-
pose that ¥ and i are two arbitrary vectors in R? and that
¥ is a third vector whose endpoint is on the line segment
connecting the endpoints of ¥ and @. Is the endpoint
of the vector T{X) necessarily on the fine segment con-
necting the eadpoints of T(v) and T{i}? Justify your
answer.

T

T(ii)

T(%)
T(v)

[Hini: We can write ¥ = 1 + k(i — ), for some ‘scalar
& between O and 1.]

We can summarize this exercise by saying that a
linear transformation maps a line onto a line.

The two column vectors vy and 772 of a 2 X 2 matrix A are
shown in the accompanying sketch. Consider the linear
transformation T(¥) = AX, from &2 to B2, Sketch the

vector
2
5l

Show that if T is a linear transformation from R™ to ",
then

X1

oy .
T . E)ClT(EI)+)C2T(E'_)_)—§—---—{—-me(€m),

Xm

where ), €9, ..., &y, are the standard vectors in R™.
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escribe all linear transformations from B (= R} o R.
¥ What do their graphs look iike?

41. Describe all linear transformations from R* to R (= ’H.
What do their graphs look like?

@23 When you represent a three-dimensional object graphi-
cafly in the plane (on paper, the blackboard, or a com-
puter screen), you have to transform spatial coordinates,

into plane coordinates, Y1} The simplest choice is 2
2

linear transformation, for example, the one given by the

matrix
1
{_ § 1 0}
| .
-3 0 1

a. Use this transformation to represent the unit cube
with corner poinis

0 1 0
0, ol, 1y, al,
0 0 1
1 O 1 i
1y, i, , 1
0 1 1
Include the images of the x1, x2, and x3 axes in your
sketch:
¥z
1
t i ¥1
-1 1
-1
i
b. Represent the image of the point % in your figure
!
2
in part (a). Explain.
¢. Find all the points
X3
X3 in &3
X3

that are transformed to [gj . Explain.

2

43. a. Consider the vector 7 = |3 | . Is the transformation
4

T(%) = © - % (the dot product) from R* to R linear?:

1f so, find the matrix of T

b. Consider an arbitrary vector ¥ in R3. Is the transfor-

mation T (X) = ¥ - X linear? If so, find the matrix of

T {in terms of the components of ). ¢

¢. Conversely, consider a linear transformation T from

3 to . Show that there exists a vector ¥ in R such

that T(¥) = v - X, foralt ¥ in 3. :

44. The cross product of two vectors in R is given by

az 173 azby — azbs
ar| % |bp| = |aaby —arbs
as b3 arby —asb

{See Definition A.9 and Theorem A.11 in the Appendix;)
Consider an arbitrary vector # in R?. Is the transforma- |
tion T{X) = U % X from 1’3 to &3 linear? If so, find its
matrix in terms of the components of the vector v. :
45. Consider two linear mansformations ¥ = T(X) and
% = L(¥), where T goes from R™ to R and L goes
from R to R". Is the transformation =1L (T(J?}) Jin-
ear as well? [The transformation 7 = (T(ic’)) is called
the composite of T and L.] :

?16.%Let
a b p g
A= and B = .
c d ros

Find the matrix of the linear transformation T(¥) =
B(AX). (See Exercise 45.) [Hins. Find T (1) and T (¢2).]

47. Let T be a linear transformation from ®&2 to RZ, Three
vectors iy, T, 1 in R? and the vectors T, T,
are shown in the accompanying fignre. Sketch T ().
Explain your answer.

*3 Yz

b

T
T(Dy)
{48] Consider ewo linear transformations 7" and L from R” 0
B2 We are told that T'(51) = L(i1) and T ({iz) = L)
for the vectors ¥, and ¥ sketched below. Show that
T(#) = L(¥), for all vectors % in B2

by
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Some parking meters in downtown Geneva, Switzerland,

accept 2 Franc and 5 Franc coins:

a. A parking officer collects 51 coins worth 144 Francs.
How many coins are there of each kind?

b. Find the matrix A that transforms the vector

number of 2 Franc coins
number of 5 Franc coins

into the vector

total value of coins
total nurmber of coins |

c. Is the matrix A in part (b) invertible? If so, find the
inverse (use Exercise 13). Use the resuit to check your
answer in part (a).

A goldsmith uses & platinym altoy and a silver alloy to
make jewelry; the densities of these alioys are exactly
20 and 10 grams per cubic centimeter, respectively.

a. King Hiero of Syracuse orders a crown from this
goldsmith, with a total mass of 5 kilograms (or
5,000 grams), with the stipulation that the platinum
alloy must make up at least 50% of the mass. The

goldsmith delivers a beautiful piece, but the king’s

friend Archimedes has doubts about its purity. While
taking a bath, he comes up with a method to check
the compositicn of the crown {famously shouting
“Burekal” in the process, and running to the king’s
pajace naked). Submerging the crown in water, he
finds its volume to be 370 cubic centimeters. How
much of each alloy went into this piece (by mass)?
Is this goldsmith a crook?

b. Find the matrix A that transforms the vector

mass of platinum alioy
mass of silver ailoy

into the vector

otal mass |
total volome |

for any piece of jewelry this goldsmith makes.

¢. Ts the matrix A in part (b) invertible? If so, find the in-
verse (use Bxercise 13). Use the result to check your
answer in part (a),

The conversion formula ¢ = % (F—32) from Pahrenheit
to Celsius (as measures of temperature) is nonlinear, in
the sense of linear atgebra (why?). Stll, there is a tech-
nigue that allows us 1o use a matrix to represent this
conversion.

a. Find the 2 x 2 matrix A that transforms the vettor

[F
l A 1 into the vector [Cl‘ -J _{The second row of A will

be [0 1])

b. Ts the matrix A in part (a) invertible? If so, find the
inverse (use BExercise 13). Use the result fo write a
formula expressing F in terms of C.

5§3. Inthe financial pages of anewspaper, one can sometimes

53

find a table (or matrix) listing the exchange rates between
currencies. In this exercise we will consider a miniature

" version of such a table, involving only the Canadian dol-

lar (C$) and the South African Rand (ZAR). Consider
the matrix

C$ ZAR
R
S

representing the fact that C$1 is worth ZARRB (as of

June 2008).

a. After a rip you have C$100 and ZAR1,600 in your
pocket. We represent these two values in the vector

- 100 - . .
X = { 1, 6(}0} Compute AX. What is the practical

C3
ZAR

significance of the two components of the vector AX?

b. Verify that matrix A fails to be invertible. For which
vectors b is the system A¥ = b consistent? What
is the practical significance of your answer? If the
system AX = b is consistent, fiow many solutions ¥
are there? Again, what is the practical significance
of the answer?

Consider a larger currency exchange matrix {see Exer-
cise 52), involving four of the world’s leading currencies:
Buro (€), U.S, dollar ($), Japanese yen (), and British
pound (£).

$ ¥ £
* % ¥ =T &
A = « x % 213
=170 0% % ok ¥
% % % k£

The entry @;; gives the value of one unit of the jth
currency, expressed in terms of the ith currency. For
example, az) = 170 means that €1 = ¥170 {as of
June 2008). Find the exact vaiues of the 13 missing
entries of A (expressed as fractions).

P

] 54.:';£on_sidar an arbitrary currency exchange matrix A (see

Exercises 52 and 53).

a. What are the diagonal entries a;; of A?

b. What is the relationship between ai; and aj?

e. What is the relationship between ak, dkj» and g;;7

d. What is the rank of A? What is the relationship
between A and rref{A)?




