Definition: A rational expression is an expression consisting of a \qquad
by a \qquad
\qquad .

Example 1:

Rational expressions can be used to \qquad called \qquad
\qquad -

Example 2: $f(x)=\frac{1}{x}$

Example 3: Rik usually takes 3 hours more than Pearl does to process a day's orders at Liberty Place Photo. If Pearl takes t hours to process a day's orders, the function given by $H(t)=\frac{t^{2}+3 t}{2 t+3}$ can be used to determine how long it would take if they worked together.

How long will it take them, working together to complete a day's orders if Pearl can process the orders alone in 5 hours?

Method: Products of Rational Expressions
To multiply two rational expressions, multiply numerators and multiply denominators:

$$
\frac{A}{B} \cdot \frac{C}{D}=\frac{A C}{B D}, \text { where } B \neq 0, D \neq 0
$$

Example 4: Multiply $\frac{x+5}{x-4} \cdot \frac{y-1}{x^{3}}$

Review: How do we reduce $\frac{8}{14}$?

Similarly, reduce $\frac{(x-3)(x-2)}{(x+5)(x-2)}$

What is different between $\frac{(x-3)(x-2)}{(x+5)(x-2)}$ and $\frac{(x-3)}{(x+5)}$?

Example 5: Write the function in simplified form. Be careful with the domains
a.) $f(t)=\frac{5 t^{2}+20 t}{t^{2}+4 t}$
b.) $g(m)=\frac{m^{2}-9}{3 m+3} \cdot \frac{m+3}{m-3}$

Example 6: Simplify
a.) $\frac{x^{2}-16}{x^{2}} \cdot \frac{x^{2}-4 x}{x^{2}-x-12}$
b.) $\frac{a^{2}-1}{2-5 a} \cdot \frac{15 a-6}{a^{2}+5 a-6}$

Important: We canNOT cancel over \qquad

Example 7: Simplify
a.) $\frac{x+1}{x}$
b.) $\frac{6 t-1}{2}$
c.) $\frac{2 x}{x+1}$
d.) $\frac{x^{3}+y^{3}}{x^{2}+2 x y-3 y^{2}} \cdot \frac{x^{2}-y^{2}}{3 x^{2}+6 x y+3 y^{2}}$

Method: Quotients of Rational Expressions
To divide two rational expressions, invert the second expression and multiply:

$$
\frac{A}{B} \div \frac{C}{D}=\frac{A}{B} \cdot \frac{D}{C}=\frac{A D}{B C}, \text { where } B \neq 0, D \neq 0
$$

Example 8: Simplify
a.) $\frac{3 y+15}{y^{7}} \div \frac{y+5}{y^{2}}$
b.) $\frac{x^{2}-y^{2}}{4 x+4 y} \div \frac{3 y-3 x}{12 x^{2}}$

Example 9: Simplify $g(x)=\frac{x^{2}-9}{x^{2}} \div \frac{x^{5}+3 x^{4}}{x+2}$ and list all domain restrictions

Let's explore an example to learn a bit about vertical asymptotes ... consider $H(t)=\frac{t^{2}+5 t}{2 t+5}$. Use your calculator to generate a graph. Looking at the graph, what happens at $t=-\frac{5}{2}$? This is called a

Example 10: Consider $f(x)=\frac{(x-1)(x+3)}{(2 x+1)(x+3)}$ and $g(x)=\frac{x-1}{2 x+1}$. Find and compare their vertical asymptotes and domains.

Example 11: Find the vertical asymptote(s) of $g(x)=\frac{x^{2}-4}{2 x^{2}-5 x+2}$.

