Example 1: Consider $x^{2}=-5 x$
a.) Using the graphing calculator, solve using the intersect method.
b.) Using the graphing calculator, solve using the zero method.

Vocabulary: Zeros and Roots: The x-values for which a function $f(x)$ is 0 are called the zeros of the function. The x-values for which an equation such as $f(x)=0$ is true are called the roots of the equation.

Example 2: Find the zeros of the function $f(x)=x^{3}-2 x^{2}-3 x$ using the graphing calculator.

Here is a very important obvious fact. The principle of zero products: For any real numbers a and b, $a b=0$ if and only if $a=0$ or $b=0$.

When a polynomial is written as a product, we say it is \qquad .

The zeros of a polynomial function are zeros described by the \qquad of the polynomial.

Example 3: Solve $(x-2)(x+5)=0$

Example 4: Given $f(x)=x(2 x+5)$, find the zeros of the function.

To \qquad an expression means to write it as a product.

To factor out the greatest common factor (GCF) we will do \qquad .

Example 5: Factor out the greatest common factor (GCF)
a.) $6 x^{3}-24$
b.) $12 r^{2} s^{3}-9 r^{5} s^{6}+15 r^{3} s^{2}$
c.) $-5 x^{2}+10 x-25$
d.) $-4 x^{4}+6 x^{3}-2 x^{2}$

Example 6: Factor by grouping
a.) $(x-2)\left(x^{2}-3\right)+(x-2)\left(5-3 x^{2}\right)$
b.) $b^{3}-b^{2}+2 b-2$
c.) $t^{3}+6 t^{2}-2 t-12$
d.) $a x-b x+b y-a y$

Example 7: Solve $8 x^{2}=40 x$

Summary: To use the principle of zero products
1.) Write an equivalent equation with 0 on one side, using the additions principle.
2.) Factor the nonzero side of the equation.
3.) Set each factor that is not a constant equal to 0 .
4.) Solve the resulting equations.

