Graph the following functions on your graphing calculator and observe differences between polynomial and non-polynomial functions.

$$
\begin{array}{ll}
\text { Polynomial Functions } & \text { Non-polynomial Functions } \\
f(x)=x^{2}+3 x+5 & g(x)=|x-4| \\
h(x)=4 & i(x)=1+\sqrt{2 x-5} \\
j(x)=-0.5 x^{4}+5 x-2.3 & k(x)=\frac{x-7}{2 x}
\end{array}
$$

Polynomial Definitions and Vocabulary

- A number or variable raised to a power or a product of numbers and variables raised to powers is a \qquad .
- A \qquad is one or more terms combined with addition and subtraction. The powers must be \qquad
- The \qquad of a term is the sum of the \qquad
- The \qquad of a term is the constant (or number) of the term.
- The \qquad
\qquad of a polynomial is the term of highest degree. Its coefficient is the \qquad
\qquad .
- The \qquad of a polynomial is the degree of the
\qquad in the polynomial.

Example:

- Types of polynomials (by number of terms):
- A \qquad is a polynomial with one term.
- A \qquad is a polynomial with two terms.
- A \qquad is a polynomial with three terms.
- Types of polynomials (by degree):

○ \qquad if it has degree 0 or 1

○ \qquad if it has degree 2

○ \qquad if it has degree 3

- The order of a polynomial:

○ \qquad
\qquad is when the exponents of one variable
\qquad from left to right in the polynomial.

○ \qquad
\qquad is when the exponents of one variable
\qquad from left to right in the polynomial.

Example 1: For each polynomial, find the degree of each term, the degree of the polynomial, the leading term, and the leading coefficient.
a.) $3 x^{4}-17 x^{2}+2 x-5$
b.) $3 x^{3}-5 x^{2} y^{3}-8 x^{4} y^{2}+4 y^{4}+4 x-7$

Term:

Degree:

Leading term:

Leading Coefficient:
Degree of the polynomial:

Term:

Degree:

Leading term:

Leading Coefficient:

Degree of the polynomial:

Example 2: Arrange the polynomial $3 x-10 x^{4}+8-3 x^{2}-4 x^{3}$ in both ascending and descending order. Ascending: Descending:

A \qquad has the form $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}$ where each a_{i} is a constant and n is a non-negative integer.

Example 3: Find $P(-3)$ for $P(x)=-x^{2}-5 x+2$ by hand, evaluating with the calculator, using the table, and by looking at the graph.

Example 4: Ibuprofen is a medication used to relieve pain. We can estimate the number of milligrams of ibuprofen in the bloodstream t hours after 400 mg of medication has been swallowed with the polynomial function $M(t)=0.5 t^{4}+3.45 t^{3}-96.65 t^{2}+347.7 t, 0 \leq t \leq 6$.
a.) How many milligrams of ibuprofen are in the bloodstream 2 hours after 400 mg has been swallowed?
b.) Use the graph to find and interpret M (4)

Fact about polynomials: The domain of the previous example was limited to six hours because of the application. However, the domain of every polynomial is \qquad (provided there aren't restrictions added on).

Example 5: Find the domain and range of the following polynomials
a.) $f(x)=x^{3}-3 x^{2}+6$
b.) $g(x)=x^{4}-4 x^{2}+5$

Domain:
Domain:

Range:
Range:

Example 6: Combine like terms
a.) $3 t^{2}-4 t-4 t^{2}-3 t+8$
b.) $5 x^{2} y-6 x y^{2}+2 x^{2} y^{2}+9 x y^{2}-9 x^{2} y$

Example 7: Add or subtract polynomials
a.) $\left(2 x^{3}-4 x^{2}+5\right)+\left(3 x^{3}-5 x-3\right)$
b.) $\left(4 s^{3}-7 s^{2}+3 s+8\right)+\left(-3 s^{3}-2 s^{2}-5 s+2\right)$
c.) $\left(4 x^{2} y-7 x y+3 y\right)+\left(x^{2} y-2 x y-7 y\right)$
d.) $\left(3 t^{2}-4 t-8\right)-\left(t^{2}+2 t-5\right)$
e.) $\left(-4 r^{3}+3 r-7\right)-\left(3 r^{2}-5 r+4\right)$
f.) $\left(4 x^{2} y-7 x y+3 y\right)-\left(x^{2} y-2 x y-7 y\right)$

