Polynomial Functions (5.1)

Graph the following functions on your graphing calculator and observe differences between polynomial and non-polynomial functions.

Polynomial Functions	Non-polynomial Functions
$f(x) = x^2 + 3x + 5$	g(x) = x-4
h(x) = 4	$i(x) = 1 + \sqrt{2x - 5}$
$j(x) = -0.5x^4 + 5x - 2.3$	$k(x) = \frac{x-7}{2x}$

Polynomial Definitions and Vocabulary

- A number or variable raised to a power or a product of numbers and variables raised to powers is a ______.
- A ______ is one or more terms combined with addition and subtraction. The powers must be _______

- The ______ of a term is the sum of the ______
- The ______ of a term is the constant (or number) of the term.
- The ______ of a polynomial is the term of highest degree. Its coefficient is the ______.
- The ______ of a polynomial is the degree of the ______ in the polynomial.

Example:

- Types of polynomials (by number of terms):
 - A ______ is a polynomial with one term.
 - A ______ is a polynomial with two terms.
 - A _______ is a polynomial with three terms.
- Types of polynomials (by degree):
 - o _____ if it has degree 0 or 1
 - o ______ if it has degree 2
 - o ______ if it has degree 3
- The order of a polynomial:
 - ______ is when the exponents of one variable
 from left to right in the polynomial.
 - ______ is when the exponents of one variable
 ______ from left to right in the polynomial.

<u>Example 1</u>: For each polynomial, find the degree of each term, the degree of the polynomial, the leading term, and the leading coefficient.

a.) $3x^4 - 17x^2 + 2x - 5$	b.) $3x^3 - 5x^2y^3 - 8x^4y^2 + 4y^4 + 4x - 7$
Term:	Term:
Degree:	Degree:
Leading term:	Leading term:
Leading Coefficient:	Leading Coefficient:
Degree of the polynomial:	Degree of the polynomial:

Example 2: Arrange the polynomial $3x-10x^4+8-3x^2-4x^3$ in both ascending and descending order.

Ascending:

Descending:

A _____ has the form $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ where each a_i is a constant and n is a non-negative integer.

Example 3: Find P(-3) for $P(x) = -x^2 - 5x + 2$ by hand, evaluating with the calculator, using the table, and by looking at the graph.

Example 4: Ibuprofen is a medication used to relieve pain. We can estimate the number of milligrams of ibuprofen in the bloodstream *t* hours after 400 mg of medication has been swallowed with the polynomial function $M(t) = 0.5t^4 + 3.45t^3 - 96.65t^2 + 347.7t$, $0 \le t \le 6$.

a.) How many milligrams of ibuprofen are in the bloodstream 2 hours after 400 mg has been swallowed?

b.) Use the graph to find and interpret M(4)

<u>Fact about polynomials</u>: The domain of the previous example was limited to six hours because of the application. However, the *domain* of every polynomial is ______ (provided there aren't restrictions added on).

Example 5: Find the domain and range of the following polynomials

a.) $f(x) = x^3 - 3x^2 + 6$ b.) $g(x) = x^4 - 4x^2 + 5$

Domain:

Domain:

Range:

Range:

Example 6: Combine like terms

a.)
$$3t^2 - 4t - 4t^2 - 3t + 8$$

b.) $5x^2y - 6xy^2 + 2x^2y^2 + 9xy^2 - 9x^2y$

Example 7: Add or subtract polynomials

a.)
$$(2x^3 - 4x^2 + 5) + (3x^3 - 5x - 3)$$

b.)
$$(4s^3 - 7s^2 + 3s + 8) + (-3s^3 - 2s^2 - 5s + 2)$$

c.)
$$(4x^2y - 7xy + 3y) + (x^2y - 2xy - 7y)$$

d.)
$$(3t^2 - 4t - 8) - (t^2 + 2t - 5)$$

e.)
$$(-4r^3+3r-7)-(3r^2-5r+4)$$

f.)
$$(4x^2y - 7xy + 3y) - (x^2y - 2xy - 7y)$$