Graph the following functions on your graphing calculator and observe differences between polynomial and non-polynomial functions.

Polynomial Functions

$$f(x) = x^2 + 3x + 5$$

$$h(x) = 4$$

$$j(x) = -0.5x^4 + 5x - 2.3$$

$$g(x) = |x-4|$$

$$i(x) = 1 + \sqrt{2x - 5}$$

$$k(x) = \frac{x - 7}{2x}$$

Smooth

CO PTI NOW

end behavior

2

pr c

domair (-00.00)

Polynomial Definitions and Vocabulary

- A number or variable raised to a power or a product of numbers and variables raised to powers is a $\frac{3}{2}$
- A polynomial is one or more terms combined with addition and subtraction. The powers must be require integers

0, 1, 2, 3, 4,...

3	X	2	Y	4	24	X	у 2	4
---	---	---	---	---	----	---	--------	---

• The of a term is the sum of the percent	•	The _	degree	of a term is the sum of the	powers
---	---	-------	--------	-----------------------------	--------

- The ______ of a term is the constant (or number) of the term.
- The <u>leading</u> term of a polynomial is the term of highest degree. Its coefficient is the <u>leading</u> coefficient.
- The <u>degree</u> of a polynomial is the degree of the <u>leading</u> in the polynomial.

Example:

- Types of polynomials (by number of terms):
 - o A Moronial is a polynomial with one term.
 - o A biromial is a polynomial with two terms.
 - o A tylemial is a polynomial with three terms.
- Types of polynomials (by degree):
 - o livear if it has degree 0 or 1 3, 4x, 3+4x
 - o quadratic if it has degree 2 4-2x2, x2+2x-3
 - o <u>cubic</u> if it has degree 3 $1-x^3$, $2x^3+4x^2-7$
- The order of a polynomial:
 - o ascending order is when the exponents of one variable it crease from left to right in the polynomial.
 - o descending order is when the exponents of one variable decrease from left to right in the polynomial.

Example 1: For each polynomial, find the degree of each term, the degree of the polynomial, the leading term, and the leading coefficient.

a.)
$$3x^4 - 17x^2 + 2x - 5$$

b.)
$$3x^3 - 5x^2y^3 - 8x^4y^2 + 4y^4 + 4x - 7$$

Leading term: 3 x

Leading Coefficient: 3

Leading Coefficient:

Degree of the polynomial: 4

Degree of the polynomial: 6

Example 2: Arrange the polynomial $3x-10x^4+8-3x^2-4x^3$ in both ascending and descending order.

$$-10x^4 - 4x^3 - 3x^2 + 3x + 8$$

A polynomial some has the form $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0 \text{ where each } a_i \text{ is a constant and } n \text{ is a non-negative}$ integer.

Example 3: Find P(-3) for $P(x) = -x^2 - 5x + 2$ by hand, evaluating with the calculator, using the table, and by looking at the graph.

$$P(-3) = -(-3)^{2} - 5(-3) + 2$$
$$= -9 + 15 + 2$$
$$= 8$$

Example 4: Ibuprofen is a medication used to relieve pain. We can estimate the number of milligrams of ibuprofen in the bloodstream t hours after 400 mg of medication has been swallowed with the polynomial function $M(t) = 0.5t^4 + 3.45t^3 - 96.65t^2 + 347.7t$, $0 \le t \le 6$.

a.) How many milligrams of ibuprofen are in the bloodstream 2 hours after 400 mg has been swallowed?

b.) Use the graph to find and interpret M(4)

<u>Fact about polynomials</u>: The domain of the previous example was limited to six hours because of the application. However, the *domain* of every polynomial is $(-\infty, \infty)$ (provided there aren't restrictions added on).

Example 5: Find the domain and range of the following polynomials

a.)
$$f(x) = x^3 - 3x^2 + 6$$

b.)
$$g(x) = x^4 - 4x^2 + 5$$

Domain: $(-60, \infty)$

Domain: (-00,00)

Range: $(-\infty, \infty)$

Range: [1,00]

odd degree

Example 6: Combine like terms

a.)
$$3t^2 - 4t - 4t^2 - 3t + 8$$

b.)
$$5x^2y - 6xy^2 + 2x^2y^2 + 9xy^2 - 9x^2y$$

= $-4x^2y + 3xy^2 + 2x^2y^2$

Example 7: Add or subtract polynomials

a.)
$$(2x^3 - 4x^2 + 5) + (3x^3 - 5x - 3)$$

= $2 \times ^3 - 4 \times ^2 + 5 + 3 \times ^3 - 5 \times - 3$
= $5 \times ^3 - 4 \times ^2 - 5 \times + 2$
b.) $(4s^3 - 7s^2 + 3s + 8) + (-3s^3 - 2s^2 - 5s + 2)$

$$= 5^3 - 95^2 - 25 + 10$$

c.)
$$(4x^{2}y - 7xy + 3y) + (x^{2}y - 2xy - 7y)$$

$$= 4x^{2}y - 7xy + 3y + x^{2}y - 2xy - 7y$$

$$= 5x^{2}y - 9xy - 4y$$

d.) $(3t^{2} - 4t - 8) - (t^{2} + 2t - 5)$

$$= 3t^{2} - 4t - 8 - t^{2} - 2t + 5$$

$$= 2t^{2} - 6t - 2$$

e.) $(-4r^{3} + 3r - 7) - (3r^{2} - 5r + 4)$

$$= -4r^{3} - 3r^{2} + 8r - 11$$

f.)
$$(4x^{2}y - 7xy + 3y) - (x^{2}y - 2xy - 7y)$$

= $4x^{2}y - 7xy + 3y - x^{2}y + 2xy + 7y$
= $3x^{2}y - 5xy + 10y$