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Ch 5.TF.1 F. Consider T(Z}

It

FI A
BBk
Ch 5. TF.2 T, hy Theorem 53.9.b
Ch 5. FF.3 T, by Theoramn 5.3.4a
Ch5.TF.4 F. We have (AB)" = BT AT, by Theorem 5.3.9a.
Ch5.TF.5 T.since (A+ B = AT+ BT = A4+ B
Ch 5. TF.6 T, by Theorem 5.3.4

Ch 5. TF.7 F. Consider 1!* !

1

ey

Ch 5 TF.8 'T. First note that AT = A~! by Theorem 2.4.8. Thus A is orthogonal, by Theorem 5.3.7.
Ch 5. TF.9 F. The correet formula is proj, (&) == (T - @)u, by Definition 2.2.1.
Ok 5TF.A0 T, since (TA)T = 747 = 74,

Ch 5.TF.11

=

. The Pythagorean Theorem holds for orthogonal vectors Z, 7 only (Theorem 5.1.9}

Ch 5.TF.12

o

o la el o te b
.dezib dJ = ad ~ be = det EC d} )

Ch 5 TF.13 T.T¥ 4 is orthogonal, then AT = 471, and A~ is orthogonal by Theorem 5.3.45.
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Ch5TF 15 F Comngidwr A=F8-= [8 é} Then ART = B 2] isn't equal to BT A =

-Ch 5. TF.16 T 1t is required that the columms of A be arthonormal {Theorem 33 10}, As a counterexample, consider
A m {é} , with AAT = H 8}
Ch 5. TF.17 T, since (ABBAY = ATBTBT AT = ABBA, by Theorem 5.3.5a
Ch 5.TF.18 T, since A7 BT = (BAYT = (AB)" = BT AT, by Theorem 5.3.9a

Ch 5.TF.19 F.dim(V) + dim{V"*) = 5, by Theorem 5.1.8c. Thus one of the dimensions is even and the other odd.

Ch 5. TF.20 T. Consider the QR factorization (Theorem 35.2.2)

Ch 5.TF.21 F. dot{_(}l ﬂ =—1—0= -1, yet [7(}1 ﬂ is orthogonal.

Ch 5.TF.22 T. [2(A - AT)]" = 1(A - AT)T = L(AT - A) = — [L(A - 4T)].
Ch 5. TF.23 T, since the columns are unit vectors.
Ch 5. TF.24 T. Use the Gram-Schmidt process to construct such a basis (Theorem 5.2.1)

Ch 5.TF.25 F, The colummns fail to be unit vectors (use Theorem 5.3.3b)

Ch 5TF.26 T, by definition of an orthogonal projection (Theorem 5.1.4).

1 -
Ch 5. TF.27 F. As a counterexample, consider F] ?J and {? H

Ch 5.TF.28 T, by Theorem 5.4.1.

Ch 5.TF.289 T, by Theorem 5.4.2a.

. . (200 , . . .
Ch 5TF.30 F. Cousider A = § 0 ;] or any other symmetric matrix that fails to be orthogonal.
't o fecos@  —smd T4cost  —sind |
h 5. TF & T, T = ar B=1" ) .8 £ g = _’l Citisre ire
Ch5TF31 T. Ty A 01 wd B Lsm() cosg |50 that A+ 5 sin d 1+ COSOJ it is required
1L eosf o ) )
that : ‘;i\:(();gj and { 1 ;2259} be unit vectors, meaning that 14 2cost +cos?d +8m%0 = 2+ Zcosf =1, ar
s L |
. 10 -3 ¥
cosfl = —-é, and siné = 1? Thus A = ! o 1} aned B = 23 15 a solution.
- T3
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5.TF.32 F Consider A = | N 2) }., for example, representing a rotation combined with a scaling,

i1

L3

-1 1
5TF.33 F. Consider 4 = ! 1
0 1)

57TF.34 T. By Definition 5.1.12, quanlily cos{f) = -—57 4 S 5 positive, so that € is an acute angle.
5.TF.35 'T.In Theorem 5.4.1, let A = BT to see that {im(B7)}* = ker(B). Now take the orthogonal comple-

ments of both sides and use Thcowm 5.1.8d.

51736 T, since (ATA)T = AT(AT)T = AT A, by Theorem 5.3.%.

5.TEF.37 . Verify that matrices 4 = “] *?J and B = Ll) 7;J are similar.

5TF.38 F. Consider B = [g Lllj The correct formula im{B} = im{BBT) follows from Theorems 5.4.1 and
5.4.2.

5.TF.39 T. We know that A7 = A and §~7 = 87 Now (571AS)T = STAT(S~17T = §-1AS, by Theo-
rem 5.3.94.

5. TF.40 T. By Theorem 5.4.2, we have ker{A) = ker(AT A}, Replacing A by AT in this formula, we find that
ker{ A7) = ker(AAT). Now ker{A) = ker{ AT A) = ker(AAT) = ker{AT).

5.TF.41 T. We attempt to write 4 = 5+ @, where S is synunetric and @ is skew-symmetric. Then AT =87 ..
7 = 5 - Q. Adding thv equations A = §+@ and AT = § - together gives 28 = A+ AT and § = LA+ AT).
Similarly we find @ = {4 — A7), Check that the decomposition A = S+ @ = (G(A+ AT + ($(A - AT)) does
the joh.

TF.42 T. Apply the Canchy-Schwarz inequality {squared), (¥-§)* < 2

{all n entries are 1).

5TFA43 T. Let A =

gy

) 2w ozt ] 22 oz
* y] We know that AAT = A% or oy “{j = [a? 4y Ty —H"t]_ We
| Z Lz~m‘ ~‘w3~t ;71-:—2‘7 yz 4+ t?

m( d to show that v = z. if z,' # 0, this follows from the equation % + % = 42 + gz H 2 #£ 0,1t foﬂ()wa from
2 47 = yz 7 if both y and 2 are zero, we are all set.

5.AF.44 T, since F - {projyd) = {projy & + {& — projy- &)} - projy T = |projy @° = 0. Note that T — projy& is
orthogonal to projy#, by the definition of a projection.

5TTF.45 T. Note that 1 = ‘ (TI?)“ ‘
Definition 5.3.1.

ql”AIH = |AIH for alt nonzero #, so that |AZ]| = 7. See
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ChbTF46 T.If A= Z ﬂ is a synunetric matrix, then A — xfy = . g * - E .

invertible if (and only if) det(A —aly) = (o ~2)[c —x) - B = 0. We use the quadratic formula to find the (real)

e/ ((1.+c:}3uﬁf’i:‘z(:+4f»2 ateba (o)t bdh?
p - 2

2

}. This matrix fails to be

solutions z =
Qr ZGTo.

. Note that the discriminant {a — ¢)* 4 46° is positive

e e o AP TV S U T S BV O (S
Ch 5. TF.47 T; one basis is: {O 1}{0 ﬁl}’il 0}5{1 OJ

Ch 5. TF .48 F; A direct computation or a geometrical argument shows that Q = \}3 [,1) _21} , representing a

reflection, not a rolation.

Ch 5. TF.49 F; dim(R¥%)= 9, dim(R**?)= 4, so dim{ker{L})> 5, but the space of all 3 x 3 skew-symmetric matrices
has dimension of 3.

0 -1 0 60 0 -1 00 0
Abasisis |1 ¢ 0],/0 0 0 1,!0 0 -1
0 0 0 0 07 101 ©

Ch 5. FF.50 T; Consider an orthonormal basis ), % of V. and a unit vector @i perpendicular to V, and form the

. 1 00
orthogonal matrix § = [Ty Ts #3]. Now AS = éﬁ; Ty GJ = $10 1 0] Since § i orthogonal, we have
- g 40 0
160
STAS =8 A5 =10 1 0], a diagonal matrix.
6 ¢ o0
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