18-
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50; Let T

7 = cos(B)u] + sin(t) ¥z,

where f is a parameter.

51, Let ipy and iy be two nonparatlel vectors in B2, Con-
sider the curve C in R? that consists of all vectors of
the form cos(t)iy + i),
Show that € is an ellipse. (Hint: You can interpret €
as the image of the unit circle under a suitable linear
iransformation; then use Fxercise 50.)

be an invertible linear transformation from R*to
R2. Show that the image of the unit circle is an ellipse
centered at the v;)régin.8 [Hint: Consider two perpendic-
ular unit vectors 1 and 2 such that T(3;) and T(¥2)
are perpcndicular.] (See Bxercise 47d.) The unit circle
consists of all vectors of the form

where ¢ is a parameter.
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53, Consider an invertible linear transformation T from Rr?
to R2. Let C be an ellipse in R?. Show that the image of
¢ under T is an ellipse as well. (Hint: Use the result of

Exercise 51.)

| Matrix Products

z =cos(y)

2 = cos(sin(x})

Recall the composition of two functions: The composite of the functions y = sin{x)
and z = cos(y)is z = cos(sin(x)), as illustrated in Figure 1.

Similacly, we can compose two linear trapsformations.

To understand this concept, let’s retum to the coding example discussed in

Section 2.1. Recall that the position i= [jﬂ of your boat is encoded and that you
2

radio the encoded position ¥ = B 1} to Marseille. The coding transformation is
2
- - 1 2
= A i = .
y X, with A [3 5]

In Section 2.1, we left out one detail: Your position is radioed on to Paris, as you
would expect in a centrally governed country such as France. Before broadcasting
to Paris, the position ¥ is again encoded, using the linear transformation

- - . 6
7=RBy, with Bz[g ;]

8 An eflipse in R? centered at the origin may be defined as a curve that can be parametrized as
cos(t)iby + sin{f i,
for two perpendicular vectors iy and iy, Suppose the length of i exceeds the length of 5. Then we

call the vectors -3, the serimajor axes of the ellipse and kb, the semiminor axes.
Convention: All ellipses considered in shis text are centered at the origin unless stated otherwise.
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this time, and the sailor in Marseille radios the encoded position Z to Paris. (Sg

Figure 2.)

Paris: 2
[
: ww}lere B= Lg ;
Marseilte: §
A where A = B %}
Boal: X
Figurs 2

We can think of ihe message 7 received in Paris as a function of the actual:
position ¥ of the boat, B
7 = B(AX),

the composite of the two transformations ¥ = AXandZ = BY.Isthis fransformation
7 = T'(¥) linear, and, if so, what is its matrix? We will show two approaches to these
important questions: (a) using brute force, and (b) using some theory. :

a. We write the components of the two transformations and substitute.

71 =6y + v and yi= 1 +2x

7y = 8yi + 9 yy = 3x1 + 5x3
so that
7y = 6(x; + 2x2) + 7(3x; + 5x) =(6-1+7 - 3x1 4+ (6-2+7 5
= 27xy +4Tx3, '
23 = 80xy + 2x0) + 9 +5x) = 8- 1+9-x + 3 24+9-5m
= 33x; -+ 6lx;. '

This shows that the composite is indeed linear, with matrix

6-1+7-3 6-2+7-5] _[21 47
§.1+9.3 8.249.5/ |35 61]
b. We can use Theorem 1.3.10 to show thai the transformation T{¥) = B
is linear:
T(@ + i) = B(A@ + i) = B(AT + Aw)
= B(AD) + B(Aw) = T} + T (w),
T (ki) = B{AKD)) = B(k(AD)) = k(B(AD)) = kT (W)
Once we know that 7 is linear, we can find its matrix by computilﬂg ;
vectors T(¢;) = B(Aé;) and T(4,) = B(Ag); the matrix of T is the
[T() T (¢2)], by Theorem 2.1.2:

( ;

- 27
T(e,) = B(Ae;) = B(first column of A} == [g ;] E} = [35} :

T(2,) = B(Aé;) = B(second column of A) = [2 ;} E]
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f the linear transformation T{(¥) == B(AX)is

We find that the matfix o

! i
T (e T} | = {iz 2?} .
| |

This result agrees with the result in (a), of course.

The mairix of the linear transformation T(¥) = B(AX) is cailed the product of

the matrices B and A, written as BA. This means that
T(%) = B(AX) = (BAX,
for all vectors X in B2, (See Figure 3.)

Now let’s look at the product of farger matrices.
p x m matrix. These matrices represent iinear trans

Let B beann x p matrix and A a
formations as shown in Figure 4.

Paris: 7

!
7 = BAY) = (BA)E, |

-
where BA = @7 47
35 61

l"" -
= .. B3 _i6 7
ngy,whareB—llB 9—‘

Marseiiie: ¥

ey
3
| E—

§ = AX, where A = L
Boat: © % in @™
Figure 3 Pigure 4
Again, the composite transformation 7 = B(AX) is linear. (The foregoing jus-
tification applies in this more geneyal case as well.) The matrix of the linear trans-
formation 3 = B(AX) is called the product of the matiices B and A, written as BA.
Note that BA is an i x m matrix (as it represents a linear transformation from R™
to ™). As in the case of R2, the equation ‘
7 = B(AX) = (BAMX *

holds for all vectors ¥ in R™, by definition of the product BA. (See Figure 5.)

o 7 in R"
Z i R z

% = B(A¥) = (BA)F

Fin B™ ¥inB®

Figure

Figure b
oduct B A, the number of columns of B matches

In the definition of the matrix pr
¢ these two numbers are different? Suppose

the number of rows of A. What happens i
Bisann x p matrix and A isag x m matrix, with p # ¢.

In this case, the transformations & = By and § = AX cannot be composed,
since the target space of ¥ = AF is different from the domain of 7 = By. (See

Figure 6.) To put it more plainly: The output of § = AX is not an acceptable input
for the transformation % = BYy. In this case, the matrix product BA is undefined.
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Definition 2.3.1  Matrix multiplication

a. Let B be ann x p matrix and A ag x m matrix. The product B A is defined
if (and only if) p = q.

b. If Bisann x p matrix and A a p x m matrix, then the product BA is definet
as the matrix of the linear transformation T'(¥) = B(AX). This means thy
T (%) = B(AX) = (BA)X, for all ¥ In the vector space ™, The product BA
is an n % m matrix. ;

Although this definition of matrix multiplication does not give us concrete | :
instructions for compuiing the product of two numerically given matrices, suc
instructions can be derived easily from the definition.

As in Definition 2.3.1, let B be an n x p matrix and A a p x m matrix. Let’s
think about the columns of the matrix BA:

(ith column of BA) = (BA)é¢;

= B(Aé;)
= B(ith column of A}.
If we denote the columns of A by ¥y, Uz, ..., U, We can write
P l 1 l 1
BA=Bl%, ¥ - Tmi=|Bh B, -+ Biy
o | o |
Theorem 2.3.2 The columns of the matrix product
Let Bbeann x pmatrixand Aa pxm matrix with columns ¥y, U2, . . ., U Thet
the product BA is :
P l i l
BA=B .o, Ty - Um| = B0 Bv, --- Bupy

To find B A, we can multiply B with the columns of A and combine the resultin
vectors.

This is exactly how we computed the product

6 7701 2 27 47

BA = [8 9} {3 5} - [35 61]
on page 70, using approach (b). :
For practice, let us multiply the same matrices in the reverse order. The fi

Cf1o21 16 22 2 1’7 23
g M = . Thus_e
columm of AB 18 {3 5} {8} {58],316 second 18 b } Lg} [66} _
12y 16 o 22 25
AB = {3 5} [8 9} LY 66}'

Compare the two previous displays to see that AB = BA: Matr
is nonconumdative. This should come as no surprise, in view of

ix muliplicati
the fact thé




“Theorem 2.3.3

Theorem 2.3.4

EXAMPLE |

EXAMPLE 2

SR (A R R e
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matrix product represents a composite of transformations. Even for functions of one
variable, the order in which we compose matters. Refer to the first example in this

section and note that the functions cos (sin(x)) and sin (cos(x)) are different.

Matrix multiplication is noncommutative

AB # BA, in general. However, at times it does happen that AB = BA; then we
say that the matrices A and B commiite.

It is useful to have a formula for the ijth entry of the product BA of ann x p
matrix B and a p x m matrix A.
Let Uy, Ua, ..., U De the columns of A. Then, by Theorem 2.3.2,

b 1 | i | l

- - -

|
BAZB ‘31 172 !"jj e Uy = BU; Bﬁg ij Bﬁm
Lo | 5 | l | o

The i jth entry of the product BA is the {th component of the vector BU;, which is '
the dot product of the ith row of B and 7 ;, by Definition 1.3.7.

The entries of the matrix product

let Bheann x pmatrixand Aa p X m matrix. The i jth entry of BA is the dot
product of the ith row of B with the jth column of A.

by b o bip ]
boy bn - bap @y dy e g o dim
BA : : . : any dyy v Gy v Ham
RO bi» el bli’?
|- oo apt dapy v Gpi o0 dpm
Lbnl by - bnp_
is the n x m matrix whose ijth entry is
P
biiay; + bipany 4+ -+ bipap; = > by @
=1

6 7‘} 1 27 _[6-1+7-3 6-2+7-5] (27 47
g8 9113 5] [8-1+9.3 8§.24+9-5] (35 6l
We have done these computations before. (Where?)

-

Compute the products BA and ABfor A = t? a and B = [ﬁ(l) ﬂ . Interpret

your answers geometrically, as composites of linear transformation. Draw compo-
sition diagrams.

Solution

Lol

Note that in this special example it turns out that BA = —AB.
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From Section 2.2 we recall the following geometrical interpretations:

A= L? a represents the refiection about the vector E} ;
~-1 0 . 0
B = 0 1 represents the refiection about 1 :
L
0 —1 . g
BA = 1 0 represents the rotation through E; and
1 . T
AB = {_1 0} represents the rotation through — 5
Let’s use our standard L to show the effect of these transformations. See Figures 7
and 8. L
A

BA

Figure 7

Figure §

Matriz Algebra
Next let’s discuss some algebraic rules for matrix multiplication.

« Composing a linear transformation with the identity transformation, on eith
side, leaves the transformation unchanged. (See Example 2. 1.4}

Theorem 2.3.5 Multiplying with the identity matrix
For an i X m mMatrix A,

Al, = 1L,A = A.
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o If Aisann x p matrix, B a p x ¢ matrix, and C ag x m matrix, what is the
relationship between (AB)C and A(BC)?
One way to think about this problem (although perhaps not the most

elegant one) is to write C in terms of its colummns: C = [§] Ty - B |
Then

(AB)C = (AB) [§; T2 - Um] = [(AB), {(AB)#z -~ (AB)in],
and

A(BC) = A[BY, Biy - Bi,| = [A(BT)) A(Biy) - A(BU,)] .

Since (AB)Y; = A(BU;), by definition of the matrix product, we find that
{(ABYC = A(BC).

Theorem 2.2.6 Matrix multiplication is associative
(ABYC = A(BC)
We can simply write ABC for the product (AB)C = A(BC). 7

A more conceptual proof is based on the fact that the composition of functions
is associative, The two linear transformations

T(E) = {(ABYC)Y and L(E) = {A(BO))X

are identical because, by definition of matrix muitiplication,

A(BO) T(X) = ((AB)C)X = (ABY(CKX) = A(B(CH))
ﬂ—;\ and .
R RY R? it

w L(%) = (A(BC))X = A((BC)X) = A(B(CX)).
aB)c AB The domains and target spaces of the linear transformations defined by the matrices

Figure § A, B,C.BC, AB, A(BCY, and (AB)C are shown in Figure 9.

Theorem 2.3.7  Distributive property for matrices
If A and B are n x p matrices, and C and D are p x m matrices, then
A(C+D)y=AC+AD, and
(A+ BYC = AC + BC. £

You will be asked to verify this property in Exercise 27.

Theorem 2.3.8 If Aisann x p matrix, B is a p x m matrix, and k is a scalar, then
(kAYB = A{kB) = k(ARB). B

You will be asked to verify this property in Exercise 28.

Block Matrices (Optional)

In the popular puzzle Sudoku, one considers 2 9 x 9 matrix A that is subdivided into
nine 3 x 3 matrices called blocks. The puzzle setter provides some of the 81 entries
of matrix A, and the objective is to fill in the remaining entries so that each row of
A, each column of A, and each block contains each of the digits 1 through 9 exactly
once.
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Theorem 2.3.9

FXAMPLE 3

513 7
6 1193
9.8 6
8 6 3
gl 13 1
7 2 6
6| 218
BORE 5
| 8 17

This is an example of a block matrix (or partitioned matrix), that is, a matrix that i
partitioned mto rectangular submatrices, called blocks, by means of horizontal an
vertical lines that go all the way through the matrix.

The blocks need not be of equal size.

For example, we can partition the matrix

12 3 1 203
B=|4 5 6} as  B= 4 516 :{‘;” ‘;”1,
6 7 9 6 719 2 Bx

i 2 3
4 5} , B = {6]’32} =[6 7], and Bzz=[9l-

A useful property of block matrices is the following:

where By =

Multiplying block matrices

Block matrices can be multiplied as though the blocks were scalars (1.e., using the;
formula in Theorem 2.3.4): '

CALL A o Aip]
Ay Axn -+ Api rBy Bn Bim].
AR = ' ___r_‘._ e By Bz By,
A A : :
. " : Bp] sz Bpm
| An A o Anp

is the block matrix whose i jth block is the matrix
P
AuByj + AnBaj + o+ ApBp = ) AuBy.
k=1

provided that all the products Ak By are defined.

Verifying this fact is left as an exercise. A numerical example follows.
I 213
10 | 1]
7 819
0 1771 2 -1 ' 0 113 —1
_ RN
Bk Mo o | B ORI

-3 -3 | -3
=l s 10 | oaep
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Compute this product without using a partition, and see whether or not you find

the same result.

E

In this simple example, using blocks is somewhat pointless. Example 3 merely
itustrates Theorem 2.3.9. In Example 2.4.7, we will see a more sensible application
of the concept of block matrices.

EXERCISES 2.3

GOAL Compute matrix products column by column and
entry by entry, Interpret matrix multiplication in terms
of the underlying linear transformations. Use the rules of
matrix algebra. Multiply block matrices.

If possible, compute the matrix products in Exercises I
through 13, using paper und pencil.

L[r o2 2-1m173‘}
0 113 4 =2 2|3 1]
(12 3][1 2 L 3 2

s [D23[E e |
4 5 6 {3 4 2 Lo
10 . -

1 | B i
..0 4] L. L
10 —17 01 2 3

7000 1 143 2 1
bo-1 =2] 02 1 3
[0 1[0 1] t 21 0-6 8§

8
I Y

12 3

0. {1 0 -1]f2 1| m[1 2 312

11 1
1
12. 121 {1 2 3]
3
a b ¢ 0
B[00 1]id e fl1
g h k|0
14. For the matrices ,
11 .
Am[l IJ, B=[1 2 3],
Lo -1 1 ‘
C=i2 1t 0f, D=|1|. E=]5],
3020 1

determine which of the 25 matrix products AA, AB,
AC, ..., ED, EE are defined, and mmpule those that
are dcﬁned

Use the given partitions to compute the products in Exer-
cises 15 and 16. Check your work by computing the same
products without using a partition. Show all your work.

't oo 1|0
15. O 10 2;0
134 30 4
101 0 1 2]2 3
0 110 1 3 414 5
16, ;
0 011t 0 09};2
L0 00 I 0 03 4

In the Exercises 17 through 26, find all matrices thai com-
mute with the given matrix A.

L0 ‘ o2
17. A = 0 2}_ 18. A= 0 J
o -2 T2 3
19. A = 5 0} 30, A= = 2}
1 21 11
2k A = oo 22. A= i 1]
3 2 0 0]
23.A:q6} 24, A= {0 3 0
L= 00 4
2 0 0o [2 0 0
2. 4=10 3 0 26 A= 10 2 D
00 2 [0 0 3]
X7, Prove the distributive lows for matrices:

28.

29.

ACH D)= AC+ AD
and

{A+ BYC=AC+ BC.

Consider an # x p matrix A, a p x m matrix B, and a
scalar k. Show that

(kAYB = A(kB) = k{AB).
Consider the mairix
o o
D, — rgsaf smﬂ _
Sin @ Cos
We know that the linear transformation 7(X) =
a counderclockwise rotation through an angle o.

DuX is
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a. Fortwo angles, @ and f, consider the products £, Dg
and Dg Dy, Arguing geometrically, describe the Lin-
ear transformations ¥ = Dy DgX and ¥ = DgDyX.
Are the two transformations the same?

b. Now compute the products Dy Dg and DgDg. Do
the results make sense in terms of your answer in
part (2)? Recall the trigonometric identities

sin{or £ B) = sing cos B k-cosa sin B

cos(e = B) = coser cos f = sina sin S
30. Consider the lines P and ) in B2 sketched below, Con-
sider the linear transformation T(X) = refy {ref P (i")) ,

that is, we first reflect ¥ about P and then we reflect the
resuit about .

1

ID
300 ¥

/

a. For the vector ¥ given in the figure, sketch 7(X).
What angle do the vectors X and T (%) enclose? What
is the relationship between the lengths of ¥ and T'(¥)?

b. Use your answer in part (&) to describe the trans-
formation 7 geometricaily, as a reflection, rotation,
shear, or projection.

¢. Find the matrix of T.

d. Give a geometrical interpretation of the linear trans-
formation L{¥) = refp (refQ (55)), and find the
matrix of L.

31, Consider two matrices A and B whose product AB is
defined. Describe the ith row of the product A B in terms
of the rows of A and the matrix B.

32. Find all 2 x 2 matrices X such that AX = XA for afl
2 x 2 matrices A.

For the matrices A in Exercises 33 through 42, compute
A2 = AA, A® = AAA, and A*. Describe the pattern that
emerges, and use this pattern to find A'%L, Interpret your
answers geometrically, in terms of rotations, reflections,
shears, and orthogonal projections.

—1 0 1 0 01
a7 “]} [, _1] s ) 0}

I 11 1
4. — N
1ﬁ[1 —1} 422[1 ;]

In Exercises 43 through 48, find a 2 % 2 matrix A with
the given properties. (Hint: It helps to think of geometrical
examples.)

3. A I AP =1 44, A2 At =1
45, A2 5, AP =1
46. A2 == A, all entries of A are nonzero.

47. A3 = A, all entries of A are nonzero.

. 11
10 _
48. AV = [(} J

In Exercises 49 through 54, consider the matrices

o 1 -1 0 1 0
a=lyalom=[ 0 el

b 0 —1] E?{O.ﬁ 0.8]’ F;[Q “1],

-1 0 0.8 —06 1 0
0 1 0.8 —06 I —1
=11 0] = {0.6 0,8} L I= [; 1} ‘

Compute the indicated products. Interpret these prod-
ucts geometrically, and draw composition diagrams, as in
Example 2.

49, AF and FA 50. CGand CG
51, FJand JF 82, JHand HJ
53, Chand DC 54. BE and FB.

In Exercises 55 through 64, find all matrices X that safisfy
the given matrix equation.

1 2 0 o
5. [2 4}"{”‘“{0 0}

21 g 0 1 2
ox[24]-10 0 s [l 2w

i 2 2 1
_ss.x[3 5}“’2 59.X[4 2}:12
1 2 12 3
60. B LJX_IQ 61. [0 | 2]){:12
- 1 4

6. L 23 X =1 63. 12 5| X=nh
4 5 6
L 306
10
64. 12 1|1 X=Xk
132

65. Find ail upper triangular 2 x 2 matrices X such that X 2
is the zero matrix.




66. Find all lower triangular 3 x 3 matrices X such that X
is the zerc matrix.

67. Consider any 2 x 2 mafrix A that represents a horizon-
tal or vertical shear, Compute (A — /)%, Explain your
answer geometrically: If ¥ is any vector in R?, what is
(A~ [)*F = A’Y — 2A% + %7
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68. Consider an n x m matrix A of rank n. Show that there
exists an m x n maftrix X such that AX = [,,. ifn < m,
how many such matrices X are there?

69. Consider ann x n matsix A of rank n. How many i x n
matrices X are there such that AX = [,7

The Inverse of a Linear Transformation

Let’s first review the concept of an invertible function. As you read these abstract
definitions, consider the examples in Figures | and 2, where X and ¥ are finite sets.

R : 5

Figura 1 T is invertible. R is not invertible: The equation R{x) = yg has two solutions, x; and x.
$ is pot invertible: There is no x such that S{x) = yg.

Y X

Figuere T A function T and its inverse T,

u

Definition 2.4.1  inverdble Functions

A function T from X to Y 1s called invertible if the equation T(x) = y has a unique
solution x in X foreach y in V.
In this case, the inverse 7! from ¥ to X is defined by

T ' () = (the unique x in X such that T'(x) = y).

To put it differently, the equation

X = T‘”i{y) means that y = T{x).

Note that

T_}(T(x)} =x and T(T_l(y)) =y

forall xin X and forall yin ¥.
Conversely, if L is a function from ¥ to X such that

L{Tx)y=x and  T(L() =y

forall xin X and forall yin ¥, then T is invertible and T =1L,
If a function 7 is invertible, thensois T fand (T 1) ' = T.




