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21.6

MAXWELL'S
EQUATIONS. A FINAL
THOUGHT

To gain a stght glimpse of the significance of the ideas of this chapter, we look
very briefly at the famous equations formulated in the 1860s by James Clerk
Maxwell (1831~1879), These equations are remarkable because they contain a
complete theory of everything that was then known or would later become known
about electricity and magnetism. Maxwell was the greatest theoretical physicist
of the nineteenth century, and an excellent account of his life and work is given
by James R. Newman in Science and Sensibility, vol. 1, pp. 139-193 (Simon and
Schuster, 1961).

1n Maxwell’s theory there are two vector fields defined at every point in space:
an electric field E and 2 magnetic field B, The electric field is produced by charged
particles (electrons, protons, etc.) that may be moving or stationary, and the mag-
netic field by moving charged particles.

All known phenomena involving electromagnetism can be explained and un-
derstood by means of Maxwell’s equations:

1 v-E=-L
€
B
2 e
2 VXE 3
3 V-B=0
s eyxp=d+E
€ al

Here g is the charge density, & is a constant, ¢ 1s the velocity of light, and j is
the current density (not to be confused with the upit vector in the direction of
the y-axis}. We make no attempt to discuss the meaning of these four equations,
but we do point out that the first two make statements about the divergence and
cur] of E, and the second two about the divergence and curl of B. Equivalent ver-
bal statements of Maxwell’s equations are given by Richard Feynman (Nobel
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Prize, 1965) on p. 18-2 in vol. 2 of his Lectures on Physics (Addison-Wesley,
1964):

1’ Flux of E through a closed surface = m%l—r—l-s—l—c—ig.
0

2’ Line integral of E around a ioop = w% (flux of B through the loop}.

3" Flux of B through a closed surface = 0.

current through the loop
€y

4’ ¢ (integral of B around a loop) =
3 u
+ £ (flux of E throogh the loop).

By a “loop.” Feynman means what we have called a simple closed carve. The
fact that these verbal statements are indeed equivalent to Maxwell’s equations 1
to 4 depends on Gauss’s Theorem and Stokes’ Theorem. This is perhaps easier
to grasp when these verbal statements are expressed in terms of fine and surface
integrals:

1" HE ‘ndA = 14 (S is a closed surface).
kY

£

2" jg E-dR = *‘—aa? ﬂB -1 dA (C is a simple closed curve and § is a sur-
¢ 5 face bounded by C).

3" f Bndd=0 (S is a closed surface).

N

4 czng‘dR=—1—J‘fj-ndA+~a—JE-ndA (C is = simple closed
C & ot ) .
s 3 curve and S is a surface
bounded by ).

Our only purpose in mentioning these matters is to try io make it perfectly
clear to the student that the mathematics we have been doing in this chapter has
profoundly important applications in physical science. Feynman devotes the first
21 chapters in vol. 2 of his Lectures to the meaning and implications of Maxwell’s
equations. At one point he memorably remarks:

From a long view of the history of mankind —seen from, say, ten thousand years from
now - there can be little doubt that the most significant event of the 19th century will
be judged as Maxwell's discovery of the laws of electrodynamics. The American Civil
War will pale into provincial insignificance in comparison with this important scien-
tific event of the same decade.

In making this provocative comment, perhaps Feynman was carried away by his
ebullient enthusiasi:—but perhaps not.
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Gauss’s Theorem 18 a profound theorem of mathematical analysis, with a
wealth of important applications to many of the physical sciences. The cursory
sketck of these ideas that we have given here—together with a similar sketch
of Stokes” Theorem in the pext section—is perhaps as far as an introductory
calculus course shouid go in this direction. Students who wish fo learn more
are encouraged to continue and take advanced courses {vector analysis, po-
tential theory, mathematical physics, etc.) in which these themes are fully
deveioped.

§ twle s ’7{' b

One final remark: The relations among properties (a) through (d) will not be
truly understood until we reach the stage at which the implications described
above can be grasped as an organic whole and recalled in a few seconds of
thought.

We have seen that Gauss’s Theorem relates an integral over a closed surface
to & corresponding volume integrat over the region of space enclosed by the sur-
face, and Stokes’ Theorem relates an integral around a closed curve to a corre-
sponding surface integral over any surface bounded by the curve. As we sug-
gested at the beginning of Section 21.4, these staternents are very similar and are
presumably somehow connected with each other. It turns out that both are spe-
cial cases of a powerful theorem of modern analysis called the generalized Stokes
Theorem. Students who wish to understand these relationships must study the
theory of differential forms.

Speciﬁcaliy, if ¥ is a vector
field defined in a simply connected region of space, then any one of the follow-
ing four properties implies the remaining three:”

(a) $cF-dR =0 for every simple closed curve ¢

{b) [cF-dR is independent of the path.

{c) ¥ isa gradient field, i.c., F = Vf for some scalar field f

{d) curlF=8
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