Example 1: Consider $x^2 = -5x$

a.) Using the graphing calculator, solve using the intersect method.

2 wd + cak + intersect

b.) Using the graphing calculator, solve using the zero method.

$$x^{2} = -5x$$

$$\Rightarrow x^{2} + 5x = 0$$

$$y = x^{2} + 5x$$

$$x = 0 \text{ or } x = -5$$

$$2xd \Rightarrow \text{ calc} \Rightarrow \text{ zero}$$

Vocabulary: Zeros and Roots: The x-values for which a function f(x) is 0 are called the eros of the function. The x-values for which an equation such as f(x)equation.

Example 2: Find the zeros of the function $f(x) = x^3 - 2x^2 - 3x$ using the graphing calculator.

Solve
$$f(x) = 0$$

 $y = x^3 - 2x^2 - 3x$
 $x = -1, 0, 3$

Here is a very important obvious fact. The principle of zero products: For any real numbers a and b, ab=0 if and only if a=0 or b=0.

When a polynomial is written as a product, we say it is _______.

The zeros of a polynomial function are zeros described by the <u>Factors</u> of the polynomial.

Example 3: Solve (x-2)(x+5) = 0

Example 4: Given f(x) = x(2x+5), find the zeros of the function.

Solve
$$f(x) = 0$$

$$\Rightarrow 0 = x(2x+5)$$

$$\Rightarrow 0 = 0 \quad 0R \quad b = 0$$

$$\Rightarrow x = 0 \quad 0R \quad 2x+5 = 0$$

$$2x = -5$$

$$\Rightarrow x = 0 \quad 0R \quad x = -\frac{5}{2}$$

To <u>factor</u>. an expression means to write it as a product.

To factor out the greatest common factor (GCF) we will do reverse distribution

Example 5: Factor out the greatest common factor (GCF)

a.)
$$6x^3 - 24 = 6(x^3 - 4)$$

b.)
$$12r^2s^3 - 9r^5s^6 + 15r^3s^2 = 3r^2s^2(4s - 3r^3s^4 + 5r)$$

c.)
$$-5x^2+10x-25 = -5(x^2-2x+5)$$

d.)
$$-4x^4 + 6x^3 - 2x^2 = -2 \times (2 \times 2 - 3 \times + 1)$$

$$6CF = 2X^{2}$$
 OR $\left(-2X^{2}\right)$

Example 6: Factor by grouping

a.)
$$(x-2)(x^2-3)+(x-2)(5-3x^2)$$

b.) b^3-b^2+2b-2
= $(x-2)((x^2-3)+(5-3x^2))$
= $(x-2)(x^2-3+5-3x^2)$
= $(x-2)(2-2x^2)$
b.) b^3-b^2+2b-2
= $(b^2-b^2)+(2b-2)$
= $(b^2-b^2)+(2b-2)$

c.)
$$t^{3} + 6t^{2} - 2t - 12$$

$$= (t^{3} + 6t^{2}) - (2t + 12)$$

$$= (t^{2} + 6t^{2}) - (2t + 12)$$

$$= (t^{2} + 6t^{2}) - 2(t + 12)$$

$$= (t^{2} + 6t^{2}) - 2(t^{2} + 12)$$

$$= (t^{2} + 6t^{2}) - 2($$

Summary: To use the principle of zero products

- 1.) Write an equivalent equation with 0 on one side, using the additions principle.
- 2.) Factor the nonzero side of the equation.
- 3.) Set each factor that is not a constant equal to 0.
- 4.) Solve the resulting equations.