Jodelle has been beach walking and now wants to return to her car. She walks 1 mile per hour on the beach and 4 miles per hour on the road. She wants to get to her car as quickly as possible when she is $1 / 4$ mile from the road and 2 miles along the road to her car. What route should she take to return to her car the quickest?

DRAW A PICTURE

$$
R \cdot T=D \text { so, } T=\frac{D}{R}
$$

So, we have the function $T(x)=\frac{\sqrt{(2-x)^{2}-\left(\frac{1}{4}\right)^{2}}}{1}+\frac{x}{4}$
Which simplifies to $T(x)=\sqrt{(2-x)^{2}-\frac{1}{16}}+\frac{x}{4}$
The derivative is $T^{\prime}(x)=\frac{-(2-x)}{\sqrt{(2-x)^{2}-\frac{1}{16}}}+\frac{1}{4}$
Solving for the critical values, we have $4(2-x)=\sqrt{(2-x)^{2}-\frac{1}{16}}$
Which implies that $16\left(4-4 x+x^{2}\right)=(2-x)^{2}-\frac{1}{16}$

Or $15\left(4-4 x+x^{2}\right)-\frac{1}{16}=0$ which when distributed is $15 x^{2}-60 x+60-\frac{1}{16}=0$

Which simplifies to the quadratic $15 x^{2}-60 x+\frac{959}{16}=0$
The quadratic formula tells us that $x=\frac{120 \pm \sqrt{15}}{60}$.
Since these numbers don't mean much to us, we will look at the decimal approximations $x \cong 1.93545$ or $x \cong 2.06455$. Only the first of these values is reasonable, so we have that Jodelle walks along the road for about 1.93 miles.

