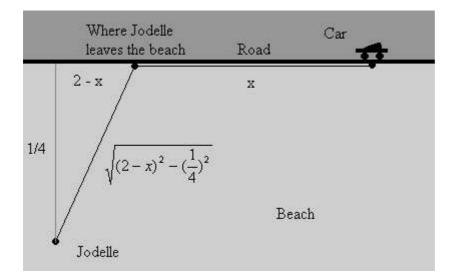
Jodelle has been beach walking and now wants to return to her car. She walks 1 mile per hour on the beach and 4 miles per hour on the road. She wants to get to her car as quickly as possible when she is ¹/₄ mile from the road and 2 miles along the road to her car. What route should she take to return to her car the quickest?

DRAW A PICTURE



$$R \cdot T = D$$
 so, $T = \frac{D}{R}$

So, we have the function
$$T(x) = \frac{\sqrt{(2-x)^2 - (\frac{1}{4})^2}}{1} + \frac{x}{4}$$

Which simplifies to $T(x) = \sqrt{(2-x)^2 - \frac{1}{16}} + \frac{x}{4}$

The derivative is $T'(x) = \frac{-(2-x)}{\sqrt{(2-x)^2 - \frac{1}{16}}} + \frac{1}{4}$

Solving for the critical values, we have $4(2-x) = \sqrt{(2-x)^2 - \frac{1}{16}}$

Which implies that $16(4-4x+x^2) = (2-x)^2 - \frac{1}{16}$

Or $15(4-4x+x^2) - \frac{1}{16} = 0$ which when distributed is $15x^2 - 60x + 60 - \frac{1}{16} = 0$

Which simplifies to the quadratic $15x^2 - 60x + \frac{959}{16} = 0$

The quadratic formula tells us that $x = \frac{120 \pm \sqrt{15}}{60}$.

Since these numbers don't mean much to us, we will look at the decimal *approximations* $x \approx 1.93545$ or $x \approx 2.06455$. Only the first of these values is reasonable, so we have that Jodelle walks along the road for about 1.93 miles.