Finding the minimum distance between a function and a point

Overview

In class, an interesting question surfaced. Are various methods for finding the minimum distance between a point and a function equivalent? We know that they should be, and yet they seem different. So, beginning with a specific example, I attempted to answer this question. In the very first case, I solved the problem exactly and I solved it fully. However, in subsequent cases I reduced the problem as follows. Finding the minimum distance amounts to finding the best route. Finding the best route amounts to finding a specific x value. So, in later cases, I simply found the x value, or to be precise, I found the equation whose solution is that x value. At this point the solution is Q.E.D.

Find the minimum distance between the point $(-3,1)$ and $y=x^{2}$.

- a.) Using geometry.

We know from geometry that the minimum distance between a line L and point not on the line is along the line perpendicular to L that goes through the point.

In our present situation, we need the line perpendicular to $y=x^{2}$ that goes through the point $(-3,1)$. We know that this curve has slopes $m=2 x$.

We want the line with slope $m=\frac{1}{-2 x}$ that goes through the point $(-3,1)$, so we have that $y-1=\frac{1}{-2 x}(x-(-3))$. That is, $y=-\frac{3}{2 x}+\frac{1}{2}$. But . . this isn't a line. Why, we used a slope that is dependent upon x. In order to find the line, we need to find an x - specifically where $x^{2}=-\frac{3}{2 x}+\frac{1}{2}$. Clearing denominators, we have that $2 x^{3}=-3+x$ or that $2 x^{3}-x+3=0$.

This is a cubic function without a rational root (which can be seen by using the rational root theorem). So, we must resort to other methods to solve it, namely a computer algebra system like Mathematica. Mathematica gives three solutions, only one of which is real. The real solution is: $x=-\frac{6^{1 / 3}+(27-\sqrt{723})^{2 / 3}}{6^{2 / 3}(27-\sqrt{723})^{1 / 3}}$ which is approximately $x \cong-1.28962$.

For this value of $x, y=\left(-\frac{6^{1 / 3}+(27-\sqrt{723})^{2 / 3}}{6^{2 / 3}(27-\sqrt{723})^{1 / 3}}\right)^{2}$ which is approximately $y \cong 1.66313$.
The distance between $(-3,1)$ and $\left(-\frac{6^{1 / 3}+(27-\sqrt{723})^{2 / 3}}{6^{2 / 3}(27-\sqrt{723})^{1 / 3}},\left(-\frac{6^{1 / 3}+(27-\sqrt{723})^{2 / 3}}{6^{2 / 3}(27-\sqrt{723})^{1 / 3}}\right)^{2}\right)$ is
distance $=\sqrt{\left(3+\frac{1}{(162-6 \sqrt{723})^{1 / 3}}+\frac{1}{6}(162-6 \sqrt{723})^{1 / 3}\right)^{2}+\left(1-\frac{\left(6^{1 / 3}+(27-\sqrt{723})^{2 / 3}\right)^{2}}{66^{1 / 3}(27-\sqrt{723})^{2 / 3}}\right)^{2}} \quad$ which \quad is approximately distance $\cong 4.34058$.

- b.) Using the distance formula

The distance between the point $(-3,1)$ and the curve $y=x^{2}$ is $d(x)=\sqrt{(x-(-3))^{2}+\left(x^{2}-1\right)^{2}}$. This has a minimum where $d^{\prime}(x)=0$ and $d^{\prime \prime}(x)>0$.
$d^{\prime}(x)=\frac{2(x+3)+4 x\left(x^{2}-1\right)}{2 \sqrt{\sqrt{(x+3)^{2}+\left(x^{2}-1\right)^{2}}}}=\frac{2 x^{3}-x+3}{\sqrt{(x+3)^{2}+\left(x^{2}-1\right)^{2}}}$. Since the denominator is always positive, this has zeroes where
$2 x^{3}-x+3=0$. This is the same cubic we solved above. However, in order to see that the zero (found above) is a minimum, let's find the second derivative.

After some simplification, we find $d^{\prime \prime}(x)=\frac{-19+x^{2}\left(60+x\left(24-3 x+2 x^{3}\right)\right)}{\left(10+x\left(6-x+x^{3}\right)\right)^{3 / 2}}$. Evaluating this at zero (found above), we have:

$$
\begin{aligned}
& d "\left(-\frac{6^{1 / 3}+(27-\sqrt{723})^{2 / 3}}{6^{2 / 3}(27-\sqrt{723})^{1 / 3}}\right)= \\
& -\left(1 2 \left(1110(4347 \sqrt{3}-485 \sqrt{241})(27-\sqrt{723})^{1 / 3}+6^{1 / 3}(323551 \sqrt{3}-36099 \sqrt{241})(27-\sqrt{723})^{2 / 3}+\right.\right. \\
& \left.\left.32^{2 / 3} 3^{1 / 6}(-13468879+500913 \sqrt{723})\right)\right) / \\
& \left((27-\sqrt{723})^{11 / 6} \sqrt{\frac{48566^{2 / 3}-542^{2 / 3} 3^{1 / 6} \sqrt{241}+6^{1 / 3}(244-9 \sqrt{723})(27-\sqrt{723})^{2 / 3}-118(27-\sqrt{723})^{4 / 3}}{-27+\sqrt{723}}}\right. \\
& \left.\left(-4856^{2 / 3}+542^{2 / 3} 3^{1 / 6} \sqrt{241}+118(27-\sqrt{723})^{4 / 3}+6^{1 / 3}(27-\sqrt{723})^{2 / 3}(-244+9 \sqrt{723})\right)\right)
\end{aligned}
$$

This may be the nastiest expression we have ever seen, but what matters is that it is approximately 4.89459 which is positive. So, we have again found the minimum distance.

- c.) Using the square of the distance.

Lemma.

Suppose $[f(x)]^{2}$ with $f(x)>0$ is a twice differentiable function with a local minimum at $x=a$. Then $f(x)$ also has a minimum at $x=a$.
\square Proof.
$\frac{d}{\mathrm{dx}}[f(x)]^{2}=2 f(x) f^{\prime}(x)$. Evaluating at $x=a$ gives a zero since there is a minimum on a twice differentiable function, but $f(a)>0$, so $f^{\prime}(a)=0$.
$\frac{d^{2}}{\mathrm{dx}}[f(x)]^{2}=2\left[f^{\prime}(x)\right]^{2}+2 f(x) f^{\prime \prime}(x)$. Evaluating at $x=a$ gives a positive result since there is a minimum, but we already showed that $f^{\prime}(a)=0$ and we assumed $f(a)>0$, se we have that $f^{\prime \prime}(a)>0$.
Hence, $f(x)$ has a minimum at $x=a$.
Consider the function $D(x)=[d(x)]^{2}=(x+3)^{2}+\left(x^{2}-1\right)^{2}$.
$D^{\prime}(x)=2(x+3)+4 x\left(x^{2}-1\right)$. This looks precisely like the numerator we found in $d^{\prime}(x)$.
It has a real zero when $4 x^{3}-2 x+6=0$ or $2 x^{3}-x+3=0$. We know this is a minimum because $D^{\prime \prime}(x)=12 x^{2}-2$ is positive at the critical number of $D^{\prime}(x)$.

- Find the minimum between a function and a point.

- a.) Using geometry.

Find the minimum between a smooth function $y=f(x)$ and the point (a, b). Using geometry we have that the slopes on $f^{\prime}(x)$ are given by $-\frac{1}{f^{\prime}(x)}$. Thus the lines perpendicular to $f(x)$ are given by $y-b=-\frac{1}{f^{\prime}(x)}(x-a)$. That is, $y=-\frac{1}{f^{\prime}(x)}(x-a)+b$. Furthermore, we know that $y=f(x)$ and so we can fix the slope of this line by solving $f(x)=-\frac{1}{f^{\prime}(x)}(x-a)+b$. Moving everything to the left side and clearing the denominators (we assume $f^{\prime}(x) \neq 0$), we have that $(x-a)+f^{\prime}(x)(f(x)-b)=0$.

- b.) Using the square of the distance.

Let $D(x)=(x-a)^{2}+(f(x)-b)^{2}$. Then, $D^{\prime}(x)=2(x-a)+2 f^{\prime}(x)(f(x)-b)$. This has critical numbers when $2(x-a)+2 f^{\prime}(x)(f(x)-b)=0$. Dividing by two, we have that $(x-a)+f^{\prime}(x)(f(x)-b)=0$ which is the same result as above. Thus, we have shown that the two methods are equivalent.

