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“To prove that wi« sin(x) = cos(x), we first prove that Bm,_g
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Claim A: £ sin(x) = cos(x).
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Recall that sinfa + b) = sin(a) cos(b) + cos(a) sinib).
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, multiply the expression by the "conjugate” of the numerator.
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To prove Claim A, we will use 1) trigonemeiric georﬁetry, ii.) the Squeeze Theorem, and iii.) we will call

upon the symmetry of 9%{@. Since we will use the Squeeze Theorem, we need an upper and lower

bound for %:—9 near 8 = 0.
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Finding an upper bound to ﬁ%@

Consider the unit circle - specifically the sector of the circle with center O, central angle 0< 6 < —g and
radius 1.

What are the coordinates of the point B:

How long is Arclength(AB):

Zooming in on the sector of the circle:

B
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What is length(BC):

And since length (BC) < arclength (AB), we have that sin(d) < ¢ and hence % <1
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Finding a lower bound to 222

Let the tangents at A and B intersect at point £.
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Now, consider the following lengths in relation to eachother and to 4.

length(EB) length (ED)
length(ED) length(AE)
length(AD) length(AE) + length(ED)

# = arciength(AB) < length(AE) + length(EB) =

Key point:
0 < tan() — o< Sl - cos(0) < 0.
e M}i‘wﬁ@ﬁrﬁ@

In part i.) we showed that cos§) < Sﬁr;{m

<1, for 0 <9< =. Sincelimg.,gcos(8) = 1and limg,g 1 =1, by the

Squeeze Theorem we have that lim, - 2% = 1. Note: We only consider 8> 0 since we are focused on
the first quadrart. '
4L Symmetry Argument.

if f(&) = S'”“ﬂ , we have that f(—@) = ﬂriﬁﬁ = 'S%m—) = ,%ijiﬁl =f(#. Hence, f(6) = S'”w) s an even function.
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This means the left and right limits must be equal and so lim,_g



