Proving that $\frac{d}{dx}\sin(x) = \cos(x)$.

To prove that $\frac{d}{dx}\sin(x)=\cos(x)$, we first prove that $\lim_{\theta\to 0}\frac{\sin(\theta)}{\theta}=1$ and $\lim_{\theta\to 0}\frac{\cos(\theta)-1}{\theta}=0$.

Claim A:
$$\frac{d}{dx}\sin(x) = \cos(x)$$
.

Recall that sin(a + b) = sin(a) cos(b) + cos(a) sin(b).

$$\frac{d}{dx}\sin(x)=\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}.$$

Claim B: $\lim_{\theta \to 0} \frac{\cos(\theta) - 1}{\theta} = 0$.

To find, $\lim_{\theta \to 0} \frac{\cos(\theta)-1}{\theta}$, multiply the expression by the "conjugate" of the numerator.

Claim C:
$$\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$$
.

To prove Claim A, we will use i.) trigonemetric geometry, ii.) the Squeeze Theorem, and iii.) we will call upon the symmetry of $\frac{\sin(\theta)}{\theta}$. Since we will use the Squeeze Theorem, we need an upper and lower bound for $\frac{\sin\theta}{\theta}$ near $\theta=0$.

i.) Trigonometric Geometry

Finding an upper bound to $\frac{\sin(\theta)}{\theta}$.

Consider the unit circle - specifically the sector of the circle with center O, central angle $0 < \theta < \frac{\pi}{2}$, and radius 1.

What are the coordinates of the point B:

How long is Arclength(AB):

Zooming in on the sector of the circle:

What is length(BC):

And since length (BC) < arclength (AB), we have that $sin(\theta) < \theta$ and hence $\frac{sin(\theta)}{\theta} < 1$.

Finding a lower bound to $\frac{\sin(\theta)}{\theta}$.

Let the tangents at A and B intersect at point E.

Now, consider the following lengths in relation to eachother and to θ .

length(EB) length (ED)

length(ED) length(AE)

length(AD) length(AE) + length(ED)

 θ = arclength(AB) < length(AE) + length(EB) = _____

Key point:

$$\theta < \tan(\theta) \to \theta < \frac{\sin(\theta)}{\cos(\theta)} \to \cos(\theta) < \frac{\sin(\theta)}{\theta}$$
.

ii.) The Squeeze Theorem

In part i.) we showed that $\cos(\theta) < \frac{\sin(\theta)}{\theta} < 1$, for $0 < \theta < \frac{\pi}{2}$. Since $\lim_{\theta \to 0} \cos(\theta) = 1$ and $\lim_{\theta \to 0} 1 = 1$, by the Squeeze Theorem we have that $\lim_{\theta \to 0^+} \frac{\sin(\theta)}{\theta} = 1$. Note: We only consider $\theta > 0$ since we are focused on the first quadrant.

iii.) Symmetry Argument.

If $f(\theta) = \frac{\sin(\theta)}{\theta}$, we have that $f(-\theta) = \frac{\sin(-\theta)}{-\theta} = \frac{-\sin(\theta)}{-\theta} = \frac{\sin(\theta)}{\theta} = f(\theta)$. Hence, $f(\theta) = \frac{\sin(\theta)}{\theta}$ is an even function. This means the left and right limits must be equal and so $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$.