Proving that $\frac{d}{dx}\sin(x) = \cos(x)$. To prove that $\frac{d}{dx}\sin(x)=\cos(x)$, we first prove that $\lim_{\theta\to 0}\frac{\sin(\theta)}{\theta}=1$ and $\lim_{\theta\to 0}\frac{\cos(\theta)-1}{\theta}=0$. Claim A: $$\frac{d}{dx}\sin(x) = \cos(x)$$. Recall that sin(a + b) = sin(a) cos(b) + cos(a) sin(b). $$\frac{d}{dx}\sin(x)=\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}.$$ Claim B: $\lim_{\theta \to 0} \frac{\cos(\theta) - 1}{\theta} = 0$. To find, $\lim_{\theta \to 0} \frac{\cos(\theta)-1}{\theta}$, multiply the expression by the "conjugate" of the numerator. Claim C: $$\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$$. To prove Claim A, we will use i.) trigonemetric geometry, ii.) the Squeeze Theorem, and iii.) we will call upon the symmetry of $\frac{\sin(\theta)}{\theta}$. Since we will use the Squeeze Theorem, we need an upper and lower bound for $\frac{\sin\theta}{\theta}$ near $\theta=0$. ### i.) Trigonometric Geometry ## Finding an upper bound to $\frac{\sin(\theta)}{\theta}$. Consider the unit circle - specifically the sector of the circle with center O, central angle $0 < \theta < \frac{\pi}{2}$, and radius 1. What are the coordinates of the point B: How long is Arclength(AB): Zooming in on the sector of the circle: What is length(BC): And since length (BC) < arclength (AB), we have that $sin(\theta) < \theta$ and hence $\frac{sin(\theta)}{\theta} < 1$. # Finding a lower bound to $\frac{\sin(\theta)}{\theta}$. Let the tangents at A and B intersect at point E. Now, consider the following lengths in relation to eachother and to θ . length(EB) length (ED) length(ED) length(AE) length(AD) length(AE) + length(ED) θ = arclength(AB) < length(AE) + length(EB) = _____ Key point: $$\theta < \tan(\theta) \to \theta < \frac{\sin(\theta)}{\cos(\theta)} \to \cos(\theta) < \frac{\sin(\theta)}{\theta}$$. #### ii.) The Squeeze Theorem In part i.) we showed that $\cos(\theta) < \frac{\sin(\theta)}{\theta} < 1$, for $0 < \theta < \frac{\pi}{2}$. Since $\lim_{\theta \to 0} \cos(\theta) = 1$ and $\lim_{\theta \to 0} 1 = 1$, by the Squeeze Theorem we have that $\lim_{\theta \to 0^+} \frac{\sin(\theta)}{\theta} = 1$. Note: We only consider $\theta > 0$ since we are focused on the first quadrant. ### iii.) Symmetry Argument. If $f(\theta) = \frac{\sin(\theta)}{\theta}$, we have that $f(-\theta) = \frac{\sin(-\theta)}{-\theta} = \frac{-\sin(\theta)}{-\theta} = \frac{\sin(\theta)}{\theta} = f(\theta)$. Hence, $f(\theta) = \frac{\sin(\theta)}{\theta}$ is an even function. This means the left and right limits must be equal and so $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$.