A FEW WORDS
FOR THE READER

Many students have difficulty when they are first asked to prove theorems
in mathematics. Part of this difficulty may come from an unfamiliarity with
the mathematical objects involved (vectors, bases, linear transformations,
groups, homomorphisms, and so forth), but a major part of the difficulty
seems to be due to an imprecise knowledge of the fundamentals of math-
ematics: logic, sets, relations and functions. This book attempts to address
this problem by giving a concise account of a minimal amount of this mate-
rial needed to progress further in mathematics and then using thls material
as a vehicle for gaining practice in proving theoremns.

The key word here is practice. As you no doubt have observed, learn-
ing how to write out a correct proof yourself is quite a bit different from
watching someone else write out a proof and understanding that his or her
proof is correct. Mathematics is not a spectator sport! Practice and involve-
ment are essential. If anything is to be gained from this book, the reader
must become actively engaged in working his or her way through it. This
means marking up the pages with questions about unclear passages (should
there be any!}, doing the examples and then checking the resuits, work-
ing all the exercises and, above all, approaching the subject matter with a
questioning mind intent upon gaining a thorough understanding of it.

A passive approach is doomed to failure. A pencil and paper should
be at hand before you start reading. Of course, this means that you won't
be able to read 20 pages a night; 3 pages would be a more reasonable
goal, especially further along in the book where the level of abstraction is
somewhat higher and more is expected of you. But as in anything where a
considerable effort is required, the rewards are equally great; the satisfaction
of writing a proof which you know is correct is hard to match. So pick up
your pencil (or pen or whatever it is you use) and proceed at a deliberate
pace through the following pages, knowing that mastery of their contents
will lead to mathematical pleasures unknown to the uninitiated.
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PREFACE

One of the most difficult steps a student of mathematics must make is the
one into that (blissful) state known as “mathematical maturity.” This is a
step which is accomplished by making the transition from solving problems
in a fairly concrete setting in which there is a well-known method or an al-
gorithm for each problem type (as in most calculus courses, for example) 10
writing proofs and producing counterexamples involving more abstract ob-
iects and concepts, an activity for which there is no well-defined algorithm.
Often this transition is something which is expected just to *happen,” per-
haps during the semmer between the sophomore and junior years; however,
it is not clear what summertime activities one could recommend to ensure
such a result. My recent teaching experience suggests that this transition
is not an easy one for most students and generally cannot be successfully
made without some concerted effort and guidance. Two things which seem
to inhibit a smooth transition are a lack of knowledge of some fundamental
mathematical ideas— logic, sets, functions—and a lack of experience in two
important mathematical activities —finding examples of objects with spec-
ified properties and writing proofs. This book is an attempt to provide an
opportunity to gain exposure to these activities while learning some of the
necessary fundamental ideas.

1 have tried to keep the book as short as possible to achieve these goals;
thus some interesting topics are left out and others are treated only in the
exercises. I have also tried to take a developmental point of view so that the
book starts out in a fairly simple, informal manner and gradually becomes
more formal and abstract. This means that while it is possible to cover the
first chapter rather rapidly, one shouid not expect to maintain this speed
throughout the book; indeed, T have found that some sections in Chapter 2
can easily take more than a week to cover with any degree of thoroughness.

The transitional process begins with an informal introduction to logic,
including a careful consideration jof quantifiers and a discussion of basic
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CHAPTER

1

LOGIC

1.1 INTRODUCTION

A friend of mine recently remarked that when he studied logic he got sleepy.
Treplied that he looked sleepy at the moment and he said, “Yes, T am sleepy.”
He added, “Therefore, you can conclude that I have been studying logic.”
“Most certainly not!” I answered. “That’s a good example of an invalid
argument. In fact, if you have been swmdying logic it’s obvious that you
haven't tearned very much.”

This short excerpt from a real-life siteation is meant to illustrate the
fact that we use logic in our everyday lives—although we don’t always use
it correctly. Logic provides the means by which we reach conclusions and
establish arguments. Logic also provides the rules by which we reason in
mathematics, and o be successful in mathematics we will need to understand
precisely the rules of logic. Of course, we can also apply these rules to areas
of life other than mathematics and amaze (or dismay) our friends with our
logical, well-trained minds. :

In this chapter we will describe the various connectives used in logic,
develop some symbolic notation, discover some useful rules of inference,
discuss quantification and display someé typical forms of proof. Although
our discussion of connectives and truth tables in the beginning is rather
mechanistic and does not require much thought, by the end of the chapter
we will be analyzing proofs and writing some of our own, a Very nomn-
mechanistic and thoughtful process.




|2 AND, OR. NOT, AND TRUTH TABLES 3

It should be noted here that the truth table above does not have anything
to do with p and g, they are just placeholders—cast in the same role as x in
the familiar functional notation f{x) = 2x — 3. What the truth table does
tell us, for example, is that when the first proposition is F and the second is
T (third row of the table) the conjunction of the two propositions is E You
can check vour understanding of this point by working exercise 5 at the end
of this section.

Another common conneciive is “or,” sometimes called disfunction. The
disjunction of p and ¢, denoted by

PN 4
is true when at least one of p, g is true. This is called the “inclusive or™; it
corresponds to the “and/or” sometimes found in legal documents. Note that
in ordinary conversation we often use “or” in the exclusive sense; true only
when exactly one of the subpropositions is true. For example, the truth of
“When you telephoned T must have been in the shower or walking the dog”
jsn’t usually meant to include both possibilities. In mathematics we always

use “or” in the inclusive sense as defined above and given in the truth table
below:

p qip\V4g
T T T
T F T
F T T
F F F

Given any proposition p we can form a pew proposition with the opposite
truth value, called the negation of p, which is denoted by

—p.

This is sometimes read as “not p.”
The truth table for negation is

pip
T} F
F| 7T
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1.2 AND, OR, NOT, AND TRUTH TABLES

The basic building blocks of logic are propositions. By a proposition we will
mean a declarative sentence which is either true or false but not both. For
example, “2 is greater than 3 and “All equilateral triangles are equiangular”
are propositions while “x < 3” and “This sentence is false” are not (the first
of these is a declarative sentence but we cannot assign a truth value unti! we
know what “x” represents; try assigning a truth value to the second). We
will denote propositions by fowercase letters, p, g, r, s, etc. In any given
discussion different letters may or may not represent different propositions
but a letter appearing more than once in a given discussion will always
represent the same proposition. A true proposition will be given a truth
value of T (for true) and a false proposition a truth value of F {for false).
Thus “2 + 3 < 7" has a truth value of T while “2 + 3 = 7 has a truth
value of F

We are interested in combining simple propositions (sometimes called
subpropositionsy to make more complicated (or compound) propositions. We
comibine propositions with connectives, among which are “and,” “or” and
“implies.” If p, g are two propositions then “p and ¢” is also a proposition,
called the conjunction of p and g, and denoted by

p/Ng.

The truth valve of p A g depends on the truth values of the propositions
p and g: p N\ g is true when p and g are both true, otherwise it is false.
Notice that this is the usual meaning we assign to “and.” The word “but”
has the same logical meaning as “and” even though in ordinary English it
carries a slightly different connotation. A convenient way to display this fact
is by a truth table. As each of the two propositions P. ¢ has two possibie
truth values, together they have 2 X 2 = 4 possible truth values so the table
below lists all possibilities:

r g ipg
T T| T
T F| F
F T!| F
F F. ¥

Thus, for example, when p is T and ¢ is F (line 2 of the truth table), rNg
is F In fact, this truth table can be taken as the definition of the connec-

tive /.
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We can form the negation of a proposition without understanding the
meaning of the proposition by prefacing it with “it is false that” or “it i -
not the case that” but the resulting propositions are usually awkward and
do not convey the real nature of the negation. A closer comsideration of
the meaning of the proposition in question will often indicate a better way
of expressing the negation; later we will consider methods for negating
compound proposifions.

Consider the examples below:

a) 3+5>7,

b) It is not the case that 3 + 5 > 7,

) 3+5=7,

d) x* ~3x +2 = 0 is not a quadratic equation.

e) It is not true that x* — 3x +2 = O is not a quadratic equation.
f) x* —3x +2 = 0 is a quadratic equation,

Note that b) and c) are negations of a); ¢) and f} are negations of d}, but <)
and f) are to be preferred over b) and e), respectively.

We will use the same convention for — as we use for — in algebra;
that is, it applies only to the next symbol, which in our case represents
a proposition. Thus —p\/ ¢ will mean (—p)}\/ ¢ rather than =P\ q),
Just as —3 + 4 represeats 1 and not —7. With this convention we can be
unambiguous when we negate compound propositions using symbols, but
life is not so easy when weé consider how to negate compound proposi-
tions in English. For example, how do we distinguish between — P\ g and
={(p\/ q) in English? Suppose p represents “2 + 2 = 4.” and g represents
“3 4+ 2 < 4.7 Should “It is not the case that 2 + 2 = 4 or 3 4+ 2 < 47
mean —(p\/ g)or mp\/ g7 If we use the same convention we used for our
symbols it should mean —p\/ ¢. But, if we take this meaning, then how
would we say —(p\/ ¢)? The problem seems to be a lack of the equivalent
of the parentheses we used for grouping. Let us adopt the convention that
“it is not the case that” (or a similar negating phrase) applies to everything
that follows, up to some sort of grouping punctuation. Thus, “It is not the
case that 2 +2 = 4 or 3 + 2 < 4" would mean —(p/ q), while “It is not
the case that 2 + 2 = 4, or 3 + 2 < 4" would mean =p N/ g. Of course,
when speaking, one must be very careful about using pauses to indicate the
proper meaning. :

Truth tables can be used to express the possible truth values of com-
pound propositions by constructing the various columns in a methodical
manner. For example, suppose that we wish to construct the truth table for
—{p\/ —¢q). We begin by making a basic four-row {there are four possi-
bilities) truth table with column headings:
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E g | { p AVAR q )
T T
T F
F T
F F
Truth values are then entered step by step:
rp q |7 t p Vv = g )
T T T T
T F T F
F T F T
F F F F
P, ¢ columns entered
P g1 ( P AV 1 q )
T T T F T
T F T T F
F T F F T
F F F T F
-1 g column entered
p4g "  p» v = g )
T T T T FooOT
T F T T T F
F T F F F T
FF F T T F

py/ g column entered
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P g | ( b2 \V " q ﬂ
T TI!F T T F 7
T F|F T T T F
F T1iT F F F T
F FI|F g T T F

H{p\/1¢) column entered

After some experience is obtained, many of the steps written above can
be eliminated. We also note that if a compound proposition involves n
subpropositions then its truth table will require 2" rows. Thus a compound
proposition with four subpropositions will require 2° = 16 rows,

Exercises 1.2

1. Assign truth values to the following propositions:
a) 3= 7and4is an odd integer.
b) 3= 7o0r4is an odd integer.
€) 24+ 1 =3butd <4
d) 5 1is odd or divisible by 4.
e) Itisnottruethat2+2=5and5>7.
) Itisnot%ruethat2+2:50r5>7.
g 3=3.

2. Suppose that we represent “7 is an even integer” by p, “3 £ | = 47 by
q and “24 is divisible by 8” by r.
a) Write the following in symbolic form and assign truth valyes:
1) 3+ 1+ 4and24 s divisible by 8,
1) It is not true that 7 isodd or 3 4 = 4.
)3 + 1 = 4 but 24 is not divisible by §,
b}  Write out the following in words and assign truth valyes:
D py g
i) =(r Ng),
Hi) mr\/ —g.

3. Construct truth tables for
a) —p\/gq.
b) —pAp.
¢) (=pvgrAr.
d) = Ag).
e) =P g,
f)
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g p\ .
h)  =(=p).
4. Give useful negations of
a) 3—4 <7,
b) 341 =15and2 =<4,
¢) 8 is divisible by 3 but 4 is not.

5. Suppose that we define the connective * by saying that p * g is true only
when g is true and p 1s false and is false otherwise.
a} Write out the truth table for p x g.
b) Write out the truth table for g * p.
c) Write out the truth table for (p % p) * g,

6. Let us denote the “exclusive or” sometimes used in ordinary conversation
by . Thus p & g will be true when exactly one of p, ¢ is true, and
false otherwise. :

a}) Write out the truth table for p D ¢.

b) Write out the truth tables for p@ p and (p @ ¢) D g.

c) Show that “and/or” really means “and or or,” that is, the truth table
for (p N\ q) D {(p D ¢q) is the same as the truth table for p\/ g.

d)y Show that it makes no difference if we take both “or’s” in “and/or”
to be inclusive (\/) or exclusive {€B). :

1.3 IMPLICATION AND THE
BICONDITIONAL

If we were to write out the truth tables for ~(p /\ g) and for —p\/ g
{as we did in exercise 3 d), f) above) and compare them, we would note
that these two propositions have the same truth values and thus in some
sense are the same. This is an important concept {important enough to have
a name anyway) so we make the following definition:

Suppose that two propositions p, g have the same truth table. Then p
and ¢ are said to be logically equivalenr, which we will dencte by

p=>q.

Basically, when two propositions are logically equivalent they have the
same form and we may substitute one for the other in any other propo-
sition or theorem. It is important to emphasize that it is the form and not
the truth value of a proposition which determines whether it is (or s not)
logically equivalent to another proposition. For example, “2 + 2 = 47
and “7 —~ 5 = 27 are both true propositions but they are nor logically
equivalent since they have different truth tables (if we represented the first by
p then the other would need another symbol, say g, and we know that these
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do not have the same truth tables), On the other hand, “2 + 3 = § o
3-4=2"and“3~4=20r2+3 = 57 are logically equivalent. To see
this, let p represent “3 — 4 = 2" and g represent “2 + 3 = 5.” Then the
first is of the form ¢ \/ p while the second has the form p\/ . A check of
truth tables shows that these two do indeed have the same truth table.

Using this idea of logical equivalence we can state the relationskip be-
tween negation, disjunction and conjunction, sometimes called DeMorgan’s
laws:

Let p, g be any propositions. Then
PNV g) & p A g,
AN Gy > mp /g,

We have already verified the second of these in exercise 3 d) and f) in the
previous section; the reader should verify the other by means of a truth table
now. In words, DeMorgan’s laws state that the negation of a disjunction is
logically equivalent to the conjunction of the negations and the negation of
a conjunction is logically equivalent to the disjunction of the negations, A
common mistake IS to treat — in logic as — in algebra and to think that
— distributes over \/ and A Just as — distributes over +. That is, since
—la+b) = ~a+(~b), one might be led to believe, for example, that
PN q)© mpy g A quick check with truth tables (or reference to
exercise 3 d), e} in the previous section) shows that this isn’t correct. Thus,
while our logical notation appears somewhat “algebra-like” {(and indeed is
an example of a certain kind of algebra) its rules differ from those of the
familiar algebra of real numbers and we should not make the mistake of
assuming that certain logical operations behave in ways analogous to our
old algebraic friends +, X and —.

One of the most important propositional forms in mathematics is that
of implication, sometimes called the conditional. In fact, all mathematical
theorems are in the form of an implication: If “hypothesis” then “conclu-
sion.” The general form of an implication is “if p then g” where p, ¢ are
propositions; we will denote this by

p—>q.

In the conditional p — g, p is called the premise (or hypothesis or.an-
tecedent) and ¢ is called the conclusion (or consequence or conseguenty.
The truth table for p — g is
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P 9|4
T T T
T F F
F T T
F F T

If we think about the usual meaning we give to implies we should
agree that the first two lines of the above truth table correspond to ordinary
usage, but that the last two lines may not be so clear. Of course, we are
free to define the truth values of the various connectives in any way
we choose and we could take the position that this is the way we want
to define implies (which is indeed the case) but it is worthwhile to see
that the definition above also agrees with everyday vsage. To this end,
let us consider what might be called “The parable of the dissatisfied
' customer.” Imagine that we have purchased a product, say a washday
detergent called Tyde, after hearing an advertisement which said, “If
you use Tyde then your wash will be white!”™ Under what circumstances
could we complain to the manufacturer? A little thought reveals that
we certainly couldn’t complain if we had not used Tyde (the ad said
nothing about what would happen if we used Chear, for example), and
we couldn’t complain if we used Tyde and our wash was white; thus we

. could complain only in the case when we had used Tyde and our wash
was not white (as promised). Thus, the ad’s promise is false only when
“we use Tyde and get a non-white wash” is true. Let’s use our logic
notation to examine this situation more closely. Let p represent “We use
Tyde,” and ¢ represent “Our wash is white.” Then the advertisement’s
promise is

p—q
and we can complain (that is, this promise is false) only in the case when

pA g

is true. Thus, p /A =4 shoeld be logically equivalent to —(p — g). Writing
out the truth table for p A\ —g we get (the reader should verify this):
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As this is to be logically equivalent to the negation of p — ¢, the truth table
for p — g should be the negation of this (which it is—lock back to check
this) and our logic definition of implication does agree with our everyday
(or at least washday) usage.

We note that the only case in which p = q is false is when p is true
and ¢ is false; that is, when the hypothesis is true and the conclusion is
false. Thus the following implications are all true:

A H2+2=4thenl1+1 =2,

by f2+3 =4thenl+1 =5,

¢) If green is red then the moon is made of cheese.

d) If green is red then the moon is not made of cheese.
e} T<<2if2<1.

i

It should also be noted that if an implication is true then its conclusion may
be true or false (see examples a), b} above), but if an implication is true
and the hypothesis is true then the conclusion must be true. This, of course,
is the basic form of a mathematical theorem: if we know the theorem {an
implication) is correct (true) and the hypothesis of the theorem is true we
can take the conclusion of the theorem to be frue.

There are many ways of stating the conditional in English and al? the
following are considered logically equivalent:

a} If p then ¢q.

b} p implies ¢.

¢} pis stronger than ¢.
d) g is weaker than p.
e} p only if g.

£y g if p.

2) p is sufficient for ¢.
h) g is necessary for p.
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i) A necessary condition for p is ¢.
J) A sufficient condition for g is p.

Most of the time we will use the first two, but it is important to be familiar
with the rest. Keeping in mind the definition of p -~» g will help us w0
remember some of these. For example, when we say “r is sufficient for s,
we mean that the truth of r is sufficient to guarantee the truth of s; that is,
we mean r — 5. Similarly, 1f we say “r is necessary for §,” we mean that
when s 18 true, » must necessarily be true too; that is, we mean s — r.

When we observe the truth table for p — ¢ we note that it is not
symmetric with respect to p and g; that is, the truth table for p - ¢ is
not the same as the truth table for ¢ - p. In other words, these two
propositions are not logicaily equivalent and thus cannot be substituted one
for another. Because of this lack of symmetry it is convenient to-make the
following definitions:

Given an implication p — g¢:

g — p is called its converse,
—1g —» —p is called its contrapositive,
—p —» —ig 18 called its inverse.

Even though the reader has probably already noticed it, it is worth pointing
out that the inverse of an implication is the contrapositive of its converse (it
is also the converse of its contrapositive).

Perhaps the most common logical error is that of confusing an impli-
cation with its converse (or inverse). In fact, this common error seems to
be the basis for much advertising. For example, if we are told that “If we
use Tyde then our wash will be white!” (which may be true) we are appas-
ently expected to also believe that if we don’t use Tyde then our wash won’t
be white. But this is the inverse, which is logically eguivalent to the con-
verse, of the original claim. Thus, we see that we can believe Tyde's claim
and still use Chear with a clear (logically, anyway) conscience and wear
white clothes. However, an implication and its contrapositive are logically
equivalent (see exercises below) and thus may be used interchangeably, In
this case, this means that if our clothes are not white then we didn™t use
Tyde.

The final connective which we will consider is the biconditional. If p,
g are two propositions then the proposition “p if and only if ¢” (sometimes
abbreviated “p iff g™}, denoted by

P4,




is called the biconditional (not to be confused with logical equivalence
= although there is a connection which will be revealed in the next
section; keep reading). We say that p < ¢ is true when P. g have the same
truth value and false when they have different truth values. Thus the truth
table for the biconditional is

L. ] [

ol R
IS N
Mmoo}

Some other ways of BXpressing p <> g are

p is necessary and sufficient for ¢.
p is equivalent to ¢.

As the names (biconditional, if and only if) and notation suggest, there is
a close connection between the conditional and the biconditional. In fact,
p <> g is logically equivalent to (p — gy N (g == p).

Exercises 1.3

L. Which of the following are logically equivalent?
a) p/\ =g,
by p->g.
c) "'1{“1]7 \V4 q)
d) g~ —p.
&) PN/ g,
) ={p — g).
g p > =g.
h) P 1.

2. Show that the fotlowing pairs are logically equivalent:
D pAGN Ty AN (p A
RN AR AR AV VAN AVES)
¢ pergilp— q)\(g - p.
d} p— g; =g — —p. :
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3. Show that the following pairs are not Jogically equivalent:
a) =(p A g) —p/\ g,
b) =(p\ q) mpV g
¢} p—>qiq—p.
d) =~(p— q) —~p— =g.
4. Find:
a) The contrapositive of —p — g.
b} The converse of -1g — p.
¢} The inverse of the converse of ¢ — —p.
d) The negation of p — —¢q.
e) The converse of —=p N\ ¢,

5. Indicate which of the following is true:
A Hf2+1 =4then3+2 = 5.
b) Red is white if and only if green is blue.
¢} 2+ 1 =3and3+ 1 =5 implies 4 is odd.
dy If 4 is odd then 5 is odd.
e} If 4 is odd then 5 is even.
Ty If 5 is odd then 4 is odd.

6. Give examples of or tell why no such example exists:
a) A true implication with a false conclusion.
b} A true implication with.a true conclusion.
c} A false implication with a true conclusion.
d) A false implication with a false conclusion.
¢) A false implication with a false hypothesis.
f) A false implication with a true hypothesis.
g} A true implication with a true hypothesis.
h) A true implication with a false hypothesis.

7. Translate into symbols:
ay p whenever q.
b) p unless ¢.

8. Give a negation for p <> g in a form which does not involve a bicon-
ditional.

9. Suppose that p, =g and r are true. Which of the following is true?
a) p—q.
b) g — p.
¢y p—r{g\/r).
d) pegqg.
e) perr.
fpvae)—p.
g (phg)—q.




10. We note that we now have five logic “connectives™: A, V, =, <
and —, each of which corresponds to a construct from our ordinary
language. It turns out that from a logical point of view thig is somewhat

statements given above by

a) Finding a proposition which is equivalent to p\/ ¢ using just /\ and
™.

b} Writing out the truth table for rlg.

¢) Showing that p | p is equivalent to ~p,

d) Showing that (p | ¢) | (g | p) is equivalent to pig.

1.4 TAUTOLOGIES

An important class of propositions are those whose truth tables contain
only T’s in the final column; that is, propositions which are always
true and the facr that they are always true depends only on their
form and not on any meaning which might be assigned to them
(for example, recall exercise 3 g) of ‘section L2 py\/ ~p). Such
propositions are called tautologies. 1t is Important to distinguish between
frue propositions and tautologies. For example, “2 +2 = 47 i 4 true
proposition but it is not a tautology because its form 1s p which is
not always true. On the other hand, “5 s 4 primitive root of 7 or
5 is not a primitive root of 177 is a tautology no matter what being a
primitive root means. It is a tautology by virtue of its form (p\/ —p)
alone. _

The negation of a tautology, that is, a proposition which jg always
false, is called a contradiction. We must distinguish between contradictions
and false statements in the same way we distinguish between true Statements
and tautologies; a Proposition is a contradiction based on its form alone. As
examples, consider the truth tables:

Lp g ,p — (p A q)
T TlT T T T T
T FEjT T T T F
F T!F T F T T
F FI|F T F F F
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y gl - @ N (p N =g
T T[T T T F T F F
T FIT F ¥ F T T T
F TI|F T T F F I F
F FI|F T F F F F T

We see that p ~> (p\/ q) is a tautology and (p — ¢) N\ (p /\ ~g) is a
contradiction.

Using the idea of tautology, perhaps we can make clear the
distinction between “equivalent” and “logically equivalent.” Two propo-
siions p, ¢ are logically equivalent if and only if p < ¢ is a
tautology. Actually, p <> g and p <> g are propositions on two dif-
ferent levels. If we think of “p is equivalent to ¢” as a proposition,
then “p is logically equivalent to ¢~ is a proposition about this propo-
sition; namely, the (meta)-proposition “p is equivalent to g 18 true.”
For example, (p — ¢) <> (=g ~» —p) is a logical implication while
P> (p N\ g)is not; it is “just” an implication which may or may not be
frue.

We also use the idea of tautology to make the following definition: we
say that p — g is a logical implication (also “p logically implies g” or g
is a 1ogic§ll consequence of p”) if p —» g is a tautology. p logically implies
g is denoted by

p=4q.

Note that logical implication bears the same relation to implication as logical
equivalence bears to equivalence. If p logically implies ¢, and p is true,
then g must also be true. For example, p — (p \/ q), (p /A q) > p are
logical implications while p — (p /\ ¢} is not (when p is T and ¢ is F this
fast implication is F and hence not a tautology).

Tautologies form the rules by which we reason and for future reference
a list of the more common ones, along with some of their names, is given
below (p. g, r represent any propositions, ¢ represents any contradiction, t
represents any tautclogy).
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A Tist of tautoﬁogies

N

10.

12,

13.
i4.
15,

16.
17.
18.
19.
20.
21,
22.
23.
24,
25,

A

PN p
—1(p/\“ﬂp)
2 p

a) p <> {(p\/p)
b) p = (p A p}

mTp e p

Ca) PV g) = (g p)

b) (p N g) (g A p)
c) {perg) (g« p)

BORCAVACAVES B AV VA

by (p A lg Ny e ((pANgy Ay

C A PAGN ) S (AN g (p A rY

D NG AT < (p N r))

ca) (pNe)yep

by (pNe)es e
c) PV et
d) (p/\t}@p
a) =(p N g) < (p\/g)
D) ={p V@) e (p Ag)

- Pegep— gy (g - p)

b) (P g) e ((p gy (p A=)

€} (P> g) e (mp e mg)

A Pp=gyeEpyg)

b) = (p > g) e (p A=g)
(P> q) > (=g — —p)
Pr—=qg)=p/g)— e

a) (p =1 (g—=r)epyvg) —r)
D) Alp =N —r) e (p-> (g r)

(PG = r)e (p—= (g = 1)
PPN/ g}

(pNg)y—p

A q)-—gqg

=gy Ng)—>-p

=@ Ng—=r)—(p->r
PNV g)\N=p)—» ¢
(p—¢)—p

{p = @I N = 5) = (P 1) = (g )

P> q) = (p /1) (g\/ )

idempotent laws
double negation
commutative laws
associative laws
distributive laws

identity laws

DeMorgan’s laws

equivalance

implication

contrapositive
reductio ad absurdum

exportation law
addition

simplification

modus ponens

modus tollens
hypothetical syllogism
disjunctive syliogism
absurdity

Observe that in the above list, 4-
fogical implications.

16 are logical equivalences while 17-25 are
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One of the first questions from students when they see the above list
is, “Do we have to memorize all of these?” The answer is, “No, memao-
rization is not sufficient, you need to know all these! They need to be in-
corporated into your way of thinking.” At first glance, this may seem like a
formidable task, and perhaps it is. But some of these are already incorpo-
rated intc our way of thinking. For example, if someone says, “This sweater
is orlon or wool. It isn't orlon,” what do we conclude about the sweater?
We conclude that it is a wool sweater, and in doing so we have just used
the disjunctive syllogism (22 on the list above}. Similarly, if someone says,
“If I do the assignments then I enjoy the class.  did the assignment for to-
day,” we conclude that the person speaking enjoyed the class today. This
is an application of the modus ponens (19 on the list). It is not tmportant
that we learn the names of the various equivalences and implications, but
it 1§ important that we learn their forms so that we can recognize when
we are using them. It is also important to recognize when we are not rea-
soning correctly; that is, when we use something which is not a logical
implication. In the next section we will spend some time looking af this
point.

Exercises 1.4

1. Verify that 7 a}, 9 b), 13 and 14 in the list above are tautologies.

2. Determine which of the following have the form of something on the
above list (for example, (- g /\ p) — —¢ has the form of 18) and in
these cases, indicate which one:

a)y =g > {—g\/ mp).

b) ¢ = (g N\ —p).

¢) (Fr —> =p) e (mr \/ ~p).

d) (p = =g) <> (=p— q).

e) (r = g} <> (=g =)

£ (p = (nr\/ g = ((r A gy — —p).
gy r— =g /N =)

W (=g v p)Ng)— p.

3. Give examples of or tell why no such example exists:
a} A logical implication with a false conclusion.

b) A logical implication with a true conclusion.
¢} A logical implication with a true hiypothesis and false conclusion.

4. Which of the following are correct?
a) (p =g\ r)=(p—q).
b) (P @) = 1) (p = 1), :
ORCAVAVE DRI
d) ((p = @) /N =p) = =g,
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5. Which of the following are tautologies, contradictions or neither?
ay (p A\ =q)— (g\/ —p).
by =p — p.
c) mp > p,
d) (p/\=p) = p.
e) (p/\=p)—gq.
f) (p A =g) e (p— q)
g =g erlelp—(ger)
6. Which of the following are correct?
a) (p=q)=>(p—q)
b) (p = q) = {p < gq).
Q) p—>q)=q.
7. Is — associative; i.e., is (p — g) — r) &> p—=(g—=rN?
8. Is <> associative: i.e., is ((p < g) <> 1) < {(p={g<rn?

9. Which of the following true propositions are tautologies?
a) If 2+ 2 = 4 then 5 is odd.
b) 3+ 1 =4and5+3 = 8implies 3+ | = 4,
¢}3+1=4and5+3 = 8implies 3+2 = 5,
d) Red is yellow or red is not yellow.
) Red is yellow or red is red.
f} 4 is odd or 2 is even and 2 is odd implies 4 is odd. _
g) 4 is odd or 2 is even and 2 is odd implies 4 is even.

18. Which of the following are logical consequences of the set of proposi-
tons p\/ g, r — =g, ~p?
a) g.
by r.
c) =pN/ s,
d) —F.
g} ={=g /A\r).
£) g > r.

1.5 ARGUMENTS AND THE PRINCIPLE
OF DEMONSTRATION

How do you win an argument? Aside from intimidation, force of personal-
ity, coercion or threats, of course: we are speaking of convincing someone
of the logical correctness of your position. You might begin by saying, “Do
you accept p, ¢ and r as being true?” If the answer is, “Yes, of course.
Any dolt can see that!” then you say, “Well then, it follows that 7 must be
true.” For you to win your argument it must be the case {and this is what
you must argue) that (p /\ ¢ /\ r) —» ¢ is a tautology; that is, there is no




