TrTre TO

ELGEmvecToes
&
ETlirVALVDES

A stretch of desert in northwestern Mexico is populated mainly by two species of
animals: coyotes and roadrunners. We wish to model the populations o(r) and r{1)
of coyotes and roadrunners ¢ years from now if the current populations ¢y and ro are
known.'-?

For this habitat, the following equations model the transformation of this system
trom one year to the next, from time 7 to time {r -+ 1)

le(t+ 1) = 0.86¢(t) + 0.08r (1) |

e+ 1) = =0.12c(1) + Lt4r@)|”
Why is the coefficient of ¢(r) in the first equation less than 1, while the coefficient
of 7(t) in the second equation éxceeds 1? What is the practical significance of the
signs of the other two coetficients, 0.08 and —0,129

The two equations can be written in matrix form, as

ct+D] T 0.86c(t)+0.08r(t)]_ 0.86  0.08] [c(r)
rE+ D =012 + 11400 T | =012 114 (rn ]
The vector

s et
= L(r)}

is called the szare vecior of the system at time ¢, because it completely describes this
systern at time ¢, If we let

12 1.4

we can write the preceding matrix equation more succinctly as

A= [ 0.86 0.0SJ

The transformation the system undergoes over the period of one year is linear,
represented by the matrix A.

B -S4 1)

Suppuse we know the initial state

-

- - Co i
() = xg = [ J .
ro
We wish to find ¥(z), for an arbitrary positive integer 1
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We can find X (¢) by applying the transformation ¢ times to X(0):

Although it is extremely tedious to find x () with paper and pencil for large r, we
can easily compute X (7) using technology. For example, given

o [100
= l1o0)°

CR0) = AR & ngj )

we find that

To understand the long-term behavior of this system and how it depends on the initial
values, we must go beyond numerical experimentation. It would be vseful} to have
closed formulas for ¢ty and r(1), expressing these quantities as functions of 1. We
will first do this for certain (carefuliy chosen) initial state vectors.

Case 1 B Suppose we have ¢ = 100 and ry == 300, Initially, there are 100 coyotes

and 300 roadrunners, so that Xy = 100 . Then
300
o - 0.86¢ 0.08] | 100 110
M) = Axo = Lo.lz 1.54} {3{}0} - {330} ‘

Note that each population has grown by 10%. This means that the state vector X(1)
is a scalar multiple of X (see Figure 1):

(1) = AXy = 1.1%.
It is now easy to compuie X (¢} for arbitrary ¢, using linearity:

F(2) = AX(1) = A(L.1¥g) = L.IAT, = 1.1°%
3(3) = AX(2) = A(1.1%%g) = [.1°A%y = 1.1%%,

:\5,(1) = 1.?5&().

We keep multiplying the state vector by 1.1 each time we apply the transformation A.
Recall that our goal is to find closed formulas for ¢(r) and r(z}. We have

() = Lﬁm = 10'% = 11 Egﬂ ,‘
s0 that
c(t) = 100¢1.1) and r(1)y = 300(1.1)".
Both populations will grow exponentially, by 10% each year.
Case 2 B Suppose we have ¢p == 200 and rp == 100. lTh.en

0.86  0.08] ?200} 1180

~0.12 1.14) 100) T | 90} = 0-5%.

Both populations decline by 10% in the first year and will therefore decline another
10% each subsequent year. Thus

X(1) = A%y = {

X (£} = 0.91‘,’”&:0,
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30 that
e(t) = 20000.9) and r(1) = 100(0.9)".
The initial populations are mismatched: Too many coyotes are chasing too few

roadrunners, a bad state of affairs for both species.

Case 3 B Suppose we have ¢y = rg = 1,000. Then
1) = ATy = 0.86 0.08] [1,000] [ 940
TN 012 114 [1,000) T [1,020]

Things are not working out as nicely as in the first two cases we considered: The
state vector X (1) fails to be a scalar multiple of the initial state ¥y. Just by computing
X(2),X(3), ..., we could not easily detect a trend that would aliow us to generate

_ closed formulas for c(r) and (). We have to took for another approach.

The idea is to work with the two vectors

oL [100) 200
%300, Y T 00

considered in the first two cases, for which A'D; was easy to compute. Since the

vectors v; and U form a basis of R?, any vector in R? can be written uniquely as a
linear combination of Ty and Ua. This holds in particalar for the initial state vector

. 11,000
0= 1 000

of the coyote—roadrunner system:
Ip=oc\0) + et
A straightforward computation shows that the coordinates are ¢; = 2 and ¢; = 4:
Fo = 20, + 4.
Recall that A'Ty = (1.1)'0, and A'Dy = {0.9) D». T’nerc;fore,

I() = A%y = A'(Q0y + 40,) = 24'T; + 44D,
= 2{1.D)'Y, + 4(0.9)7%

oy (100 ; [200
=2(1.1) [300} +40.9 | 10

Considering the components of this equation, we can find formulas for ¢{t) and r (¢):

c(t) = 200(1.1)" + 800(0.9)
r(t) = 600¢1.1) + 400(0.9).

Since the terms involving 0.9" approach zero as ¢ increases, both populations even-
tually grow by about 10% a vear, and their ratio r (7} /c(t) approaches 600/200 = 3.

Note that the ratio r{z)/c(#) can be interpreted as the slope of the state vector
x(t), as shown in Figure 2.
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Figure 3

How can we represent the preceding computations graphically?
Figure 3 shows the representation Xy = 2v1 - 40; of X as the sum of a vector
on [} = span(d) and a vector on Ly = span(v;). The formula

X(t) = (1.1) 2%, + (0.9)'4%,

now tells us that the component in L grows by 10% each year, while the component-
in L, shrinks by 10%. The component (0.9)'49; in L, approaches 0, which means -
that the tip of the state vector X(7) approaches the line L, so that the slope of the

state vector will approach 3, the slope of L. .

To show the evolution of the system more clearly, we can sketch just the end-*
points of the state vectors x (7). Then the changing state of the system will be traced -
out as a sequence of points in the ¢-r plane.

It is natural to connect the dots to create the ifusion of a continuous rrajectory. .
{(Although, of course, we do not know what really happens between times ¢ and-
1) ;
Sometimes we are interested in the state of the system in the past, at times’
1, =2, .... Note that ¥(0) = AX(—~1), so that X(—1) = A~ % if A is invertible:
(as in our example). Likewise, ¥ (—t) = {A") "X, for 7 == 2, 3, .... The trajectory:
(future and past) for our coyote-roadrunner system is shown in Figure 4.

To get a feeling for the long-term behavior of this system and how it depends:
on the initial state, we can draw a rough sketch that shows a number of different
trajectories, representing the various qualitative types of behavior. Such a sketch is
called a phase portrait of the system. In our example, a phase portrait might show
the foregoing three cases, as well as a trajectory that starts above L, and one that
starts below L,. See Figure 5.

To sketch these trajectories, express the initial state vector Xg as the sum of a
vector iy on L; and a vector s on Lo. Then see how these two vectors change over
time. If g = i + U, then

.?C(E) £ (E.I)rﬁ)} e {09}11132
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We see that the two populations will prosper over the long term if the ratic rg/cy
of the initial populations exceeds 1/2; otherwise, both populations will die out.

From a mathematical point of view, it is informative to skeich a phase portrait
of this system in the whole c—r-plane, even though the trajectories outside the first
quadrant are meaningless in terms of our population study. (See Figure 6.)
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