Chapter 5

b. For f(1) = V1= we have [[fllay = /5 [ (1~ t2)di = /2/3 and {f|l,, = \/<\/1 — 42, JTSF)M :
VLT =19, = /1 —~1/4 = /3/4.

T C L) A R

True or False
Ch5TF.1 T,since (A + B =AT+BT=4+B

Ch 5TF.2 T, by Theorem 5.3.4

Ch 5. TF.3 F. Consider [i H

Ch 5.TF.4 T. First note that A7 = A=, by Theorem 2.4.8. Thus A is orthogonal, by Theorem 5.3.7.

Ch 5. TF.5 F. The correct formula is proj, (£} = (F - €}, by Definition 2.2.1,

Ch5.TF.6 T, since (7TA)T = 7AT = 7A,

Ch 5TF7 F. Consider T(F) = Llj H 7.

Ch 5 TF.8 T, by Theorem 5.3.9.1
Ch 5. TF.9 T, by Theorem 5.3.4a
Ch 5. TF.10 F. We have (AB)" = BT A" by Theorem 5.3.9a.

Ch 5. TF.11 T.If A is orthogonal, then A7 = A=, and A~} is orthogonal by Theorem 5.3.4b.

o )=l ol

B

Ch 5. TF.12 F. Consider E] é]
i

} . . 0 1] . o 10y, T 0 0]
Ch 5. TF.13 F. Cousider A = B = 0 ol Then AB' = 0 OJ isn’t equal to BY A = 0 IJ'

Ch 5. TF.14 -F. It is required that the columns of 4 be orthonormal (Theoremn 5.3.10). As a counterexample, congide
21 s T4 0
A= M, with AAT — [0 U} .
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True or False

Ch 5.TF.15
. Ch5.TF.16
Ch 5. TFA7

Ch 5TF.18

Ch 5. TF.19

Ch 5.TF.20

Ch 5. TF.21
Ch5TF.22
. Ch5.TF.23

 Ch 5. TF.24

- Ch 5. TF.25

. Ch 5.TF.28
Ch 5.TF.27
Ch 5.TF.28

Ch 5. 1TF.29

T, since (ABBAYT = ATBTBT AT — ABBA, by Theorem 5.3.9a
T, since ATBT = (BA)T = (AB)Y" = BT AT, by Theorem 5.3.9a

F. dim(V) + dim{V+) = 5, by Theorem 5.1.8¢c. Thus one of the dimensions is even and the other odd.

T. Consider the QR factorization (Theorem 5.2.2)

F. The Pythagorean Theorem holds for orthogonal vectors #, ¢ only {Theorem 5.1.9)

a bl
e di”

-

c .
b d} = gd — be = det

. 3 . 1 0 0 -1
F. As a counterexample, consider { 0 — 1} and [1 O} .

T, by Theorem 5.4.1.

T, by Theorem 5.4.2a.

F. Consider A = {2
[0

0 . . .
2] , or any other symmetric matrix that fails to be orthogonal.

-1 0 ) L
0 1] = —1—0=~1, yet { 0 J is orthogonal.

T, det[

E rs T N.:IY l TNT y i 1
T [AA- AT = HA- AT = J(AT - Ay = - [3(A - AT)].
T, since the colurnns are unit vectors.

T. Use the Gram-Schmid$ process to congtruct such a basis {Theorem 5.2.1)

F. The columns fail to be unit vectors {(use Theorem 5.3.3b)

Ch 5. TF.30 T, by definition of an orthogonal projection (Theorem 5.1.4}.
10 [cosf  —sinf i+cos# —sind . .
Ch 5.TF, T. = : =1 a0 th = , . § requirec
h 5. TF.31 'I. Try A {{] 1] and B {SmQ cosf)]’ S0 thd‘p A+ B sin 0 | f cosd It is required
that 1+ cosd and | Sme | be unit vectors, meaning that 1+ 2cosf +cos® 6 -+ sin* 6 = 2 + 2cosf = 1, or
ind 1+ cosé
/3 10 -4 -
086 = —3 and sin § = £33 g A= : = 2 2 1 iy a soluti
cosf = -3, and sinf = £%52. Thus 4 L) 1} and B G 1 ig a solution.
2 3

Ch 5.TF.32

=

o

[ )

F. Consider 4 = [ } for example, representing a rotation combined with a scaling.

oafe
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Chapter 5

Ch 5.TF.33 F. Consider A = {‘(l] H

Ch 5.TF.34 T. By Definition 5.1.12, qumtlby cos{d) = Ii'i?;(llt iﬁﬂ is positive, so that # is an acute angle.

Ch 5 FF.35 T. In Theorem 5.4.1, let A = B” {0 see that (iJﬁn{JE?T))i = ker(B}. Now take the orthogonal comple:
ments of both sides and use Theorem 5.1.84.

Ch 51836 T,since (AT )T = AT(ATYT = AT A, by Theorem 5.3.9a.
. , . M o U
Ch 5. TF.37 F. Verify that matrices 4 = 0 —i and B = [U | e similar.
- N e 0 1
Ch 5. TF.38 F. Consider I = {0 N

5.4.2,

} The correct formula im{B) = im{BB*} follows from Theorems 5.4.1 and

Ch 5 TF.39 T. We know that A7 = 4 and §7 = §7. Now (§7148)7 = STAT(s-1)T = §71A8, by Theo
rem §5.3.9a. :

Ch 5.TF.40 T. By Theorem 5.4.2, we have ker{A) = ker(A” A). Replacing 4 by A7 in this'formuia, we find th
ker(AT) = ker(AAT). Now ker(A) = ker(AT A) = ker{ AA”") = ker{A”). :

Ch 5.TF.41 T. We attemipt to write A = 5§+ (), where 5 is symmetric and () is skew-symmetric. Then AT =8+
QT = 5 - Q. Adding the equations A = §+ () and AT = § @ together gives 28 = A+ A and § = ${A+ AT
Similarly we find @ = $(A — AT). Check that the decomposition A = §+Q = (F{A+ AT)) +(3(A - AT)) doe
the job. .

Iy
Ch 5.TF.42 T. Apply the Cauchy-Schwarz inequality {squared), {2’ 4)* < |Z|*|41* to & = { ... | and §=
T
(all n entries ate 1).

o : : w2 +y? 3z 2 oy + Yt ]
CL5TFA3 T.Let A= |© Y|, We know that AAT = A2 or Ay I-Z N y)t e : yz
z t u+yt +1 btz yz+t

need to show that y = z. Ify £ 0, this follows from the equation 22 + 4 J =z 4 yz; if 2 # 0, it follows fron
22 412 = yz + % if both y and z are zero, we are all set.

Ch 5 TF.44 T, since I - (§)TOJV £} = (projy & -+ (£ — projy &) - projy & = ||proj, Tl? > 0. Note that & — projy
orthogonal to projy ¥, by the definition of a projection.

)] =

7

Ch 5.TF.45 T. Note that 1 = ’5 ( ‘ ey [|AZ]| for all nonzero &, so that AZ| = {E4p

Definition 5.3.1.

§
i

a a—x b
b b c—x
invertible if (and only if) det(A — 23) = {a — 2){c— x) ~ b* = 0. We use the quadratic formula to find the {re

Ch b5 TF46 T.If A = is a symmetric matrix, then A — 2l = { . This matrix fails 0
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True or Falge

at-ck/{ate)?—daet+db? afot (a—e)2+4b?
s e R

solutions © = . 3 Note that the discriminant (a — ¢)? + 4b% is positive
or Zero. :
. oot o) frood o1} o -1
.C-h 5.7F.47 T; one basis is: {U 1] , [0 71_‘ , {l 0} , L 0 }

Ch 5 TF.48 TF; A direct computation or a geometrical argument shows that ¢ = »—1\/-—:; B 21] , representing &
B2 -

reflection, not a rotation.

. Ch 5.TF.49 F;dim{R3*%)=9, dim(E2*?)= 4, so dira{ker(L})> 5, but the space of al 33 skew-gyminetric matrices
has dimension of 3.

¢ -1 0] fo o -17 [0 0 ©
(Abasisis |1 0 07,[0 0 0].j0 0 -1
o 0o of [t o o] lo1r 0

Ch 5. TF.50 T Consider an orthonormal basis vy, of V, and a unit vector ¥y perpendicular to V. and form the

16 0 .
orthogonal matrix § = |&h s 7). Now AS = {fﬁ Uy 5} = 510 1 01. Since § is orthogonal, we have
L
0 40 0

=

01, a diagonal matrix.

1
STAS = 871AS =10
0 0

O = L2



