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Linear Transformations in Geometry

In Example 2.1.5 we saw that the matrix ? 0} represents a counterclockwis

rotation through 90° in the coordinate plane. Many other 2 x 2 matrices define simple’
geometrical transformations as well: this section is dedicated to a discussion of some

of those transformations.

EXAMPLE 1 Consider the matrices
20 1 0 -1 0
=P gl m=fs o) e=l% )

0 | 1 02 1 -1
p=_{ o p=lg Ol =l -

Show the effect of each of these matrices on our standard letter L,* and describe
each transformation in words.

a.
ol
4
2 0]
A= [ : 2J
1! 7;
-t i
The L gets enlarged by a factor of 2; we will call this transformation a scaling
by 2. '
h.
o] ]
[2]]
f T1oo
B=
o)

The L gets smashed into the horizontal axis. We will call this transformatid
the orthogonal projection onio the horizonial axis. :

3Gee Example 2.1.5. Recall that vector E} is the foot of our standard L., and B] is its back.
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0

The L gets flipped over the vertical axis. We will call this the reflection about
the vertical axis.

d.
01
b= [—1 oj
(o7 @
El
The L is rotated through 90°, in the clockwise direction (this amounts 10 &
rotation through —90°). The result is the opposite of what we got in Exam-
ple 2.1.5.
e.

£olt 0.2}

=01

Y

: -
D
The foot of the L remains unchanged, while the back is shifted horizontally

to the right; the L is italicized, becoming L. We will call this transformation
a horizontal shear.

£ T

o]

o

Fﬂ

e "
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There are two things going on here: The L 1s rotated through 45° and also enlarged
(scaled) by a factor of /2. This is a rotation combined with a scaling (you may
perform the two transformations in either order). Among all the possible composites
of the transformations considered in parts (a) through (e), this one is particularly
important in applications as well as in pure mathematics (see Theorem 7.5.3, for

example). ]

We will now take a closer look at the six types of transformations we encountered
in Example 1.

Scalings Lo
For any positive constant k, the matrix [ 0 k] defines a scaling by £, since

kOJ.C,_kO xl kx __kx1 3
Och R Lz D 2T
Thisis a dilation (or enlargement) if k exceeds 1, and it is a contraction (or shrinking)
for values of k between 0 and 1, (What happens when k is negative or zero?)

Orthogonal Projections?
Consider a line L in the plane, running through the origin. Any vector X in R* can
be written uniquely as '

i=3+ 3

where X/ is parallel to line L, and %+ is perpendicuiar to L. See Figure 1.

# (translated)

Figure | Figure 2

The transformation 7 (%) = X! from R? to R? is calied the orthogonal projectio
of ¥ onto L, often denoted by proj, (x): :

proj; (%) = xl.

You can think of proj, (¥) as the shadow vector % casts on L if you shine a lig

straight down on L. .
Let L+ be the line through the origin perpendicular to L. Note that ¥+ is parall

to L+, and we can interpret i+ as the orthogonal projection of Fonto L+, as illustraf_?é
in Figure 2.

4The term orthogonal is synonymous with perpendicular. For a more general discussion of projection

sec Fxercise 33.
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We can use the dot product to write a formula for an orthogonal projection.
Before proceeding, you may want to review the section “Dot Product, Length,
Orthogonality” in the appendix.

To find a formula for ¥ | let @ be a nonzero vector parallel to L. Since x! is
parallel to w, we can write

il ki,
for some scalar k about to be determined. Now i+ = ¥ — ¥V = ¥ — kib is perpen-
dicular to line L, that is, perpendicular to W, meaning that
(¥ —kw) -w=0.

It follows that

=1
=4

o=k =0 or, k=

=4
=1

We can conclude that

. - =] —+ fﬁ) -
proj; (x) = X' = ki = | =—= |w.
wew

See Figure 3. Consider the special case of a unit vector u parallel to L. Then the
formula for projection simplifies to

Figure 3

Is the transformation T (¥) = proj, (¥) linear? If so, what is its matrix? If we write

f:[x;] and ﬁ=[ul},
X3 iz
proj, (F) = (¥ - i)ii = (m ‘ [ZlD [iiﬂ

u
= (xju; + Xou2) { i]
iy

then

[utxy + uiuox;
R RN + u%xg

ro..2
_ By Uiy X1
| K12 u% Xa
Cul o wun -
== X.
| 1lin u%




58 CHAPTER 2 Linear Transformations

EXAMPLE 2

Definition 2.2.1

In particular, if it = [“1

It turns out that 7(¥) = proj, (X) is indeed a linear transformation, with matrix

2
u uu e
[ ! 122}. More generally, if w is a nonzero vector parallel to L, then the
UMy U3 ¢
. 1 w?  ww .
matrix is ——sy ! 1221 (See Exercise 12.)
wy -+ ws [Wun wsy

Find the matrix A of the orthogonal projection onto the line L spanned by W == E]

Solution
oL Twh wawn] 116 12]_[064 048 5
Twtdwl wwy  wiy | 25012 9] [048 036

Let us summarize our findings.

Orthogonal Projections
Consider a line L in the coordinate plane, running through the origin. Any vector x
in R? can be written uniquely as

X=Xl 3t

where X1 is parallel to line £, and ¥ is perpendicular to L.
The transformation T'(¥) = X/ from R? to R? is called the orthogonal projection

of ¥ onto L, often denoted by proj, (X). If @ is a nonzero vector parallel to L, then-
. - 56 : ﬁ) -
proj; {x) = | o= | W.
w-w

) ] is a unir vector parallel to L, then

projy (¥) = (X - )u.
The transformation 7 (¥) = proj (¥) is linear, with matrix

i { w? wlwg} _ { ui  wguy
2 R .
wi -+ wl [wiwy w3 winy U

Reflections ;
Again, consider a line L in the coordinate plane, ranning through the origin, and let
% be a vector in B2, The reflection refz (¥) of X about L is shown in Figure 4: We
are flipping vector ¥ over the line L. The line segment joining the tips of vectors
and ref; ¥ is perpendicular to line L and bisected by L. In previous math courses you
have surely seen examples of reflections about the horizontal and vertical axes [when
comparing the graphs of y = f(x), y = — f(x), and y = f(—x). for example].

We can use the representation ¥ = %! + ¥+ to write a formula for refy, (X). 5¢¢
Figure 5.

We can see that

refy (%) = @l — 1.

Alternatively, we can express refy (¥) in terms of £+ alone or in terms of x1 alon

ref (D e il - ¥ = F i —it =% -2t
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7+ {translated)

s, vef, (¥) ref (¥}

Figure 3

Figure 4

(use Figure 5 to explain this formula geometrically) and

wf, @ =il —ft = - @ - E) =28 -
= 2proj, (¥) — ¥ = 2(% - W~ X,
where i is a unit vector parallel to L.
The formula ref(¥) = 2(¥ - #)ii — X allows us to find the matrix of a reflection.

. L. a b
Tt turns out that this matrix is of the form b —al’ where a2 + b = 1 (see

Exercise 13}, and that, conversely, any 2 x 2 matrix of this form represents a reflection
about a line (see Exercise 17).

Reflections
Consider a line L in the coordinate plane, running through the origin, and let
=] s

7 — 3t + % be a vector in R?. The linear transformation T(¥) = Xl — X~ is

called the reflection of X about L, often denoted by refy, (X):

refy (%) = &~ it

We have a formula relating refr, (¥) to projg (xX):

ref, (¥) = 2proj, (X) — X = 2% - — X
The matrix of T is of the form E _Z} _where a* + b* = 1. Conversely, any mairix

of this form represents a reflection about a line.

Use Figure 6 to explain the formula ref, (¥) = 2proj, (¥) — X geometrically.

vel ()

Figure &
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EXAMPLE 3

Orthogonal Projections and Reflections in Space
Although this section is mostly concerned with linear transformations from R? to:
R?, we will take a quick look at orthogonal projections and reflections in space,
since this theory is analogous to the case of two dimensions. _

Let L be a line in coordinate space, running through the origin. Any vector ¥
in R* can be written uniquely as ¥ = 31 -+ ¥+, where ¥l is parallel to L, and ¥ is'
perpendicular to L. We define

proj (¥) = x!,
and we have the formula
proj, (¥) = il = (¥ - iy,

where 1 is a unit vector parallel to L. See Definition 2.2.1. :

Let L= = V be the plane through the origin perpendicutar to L; note that the. -
vector X+ will be parallel to L+ = V. We can give formulas for the orthogonal:
projection onto V, as well as for the reflections about V and L, in terms of the.
orthogonal projection onto [.:

projy (X) = X — proj; (X} = X — (X - i),
refy (X) = proj, (X) — projy (¥) = 2proj, (¥} — ¥ = 2(X - i)t — ¥, and
refy (X) = proj, (¥) — proj, (X) = ~ref, (X) = X — 2(¥ - #)ii.

See Figure 7, and compare with Definition 2.2.2.

proj, (¥) A

f¢ pl‘(}j V(f) V= LJ_
L
Figure 7

Let V be the plane defined by 2x; +x; — 2x3 = 0, andlet ¥ = | 4|.Find refy(x).

-2
Solution 2 : :
Note that the vector ¥ = | 1] is perpendicular to plane V (the components of 7
- ' :

are the coefficients of the variables in the given equation of the plane: 2, 1, and —2):
Thus
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is a unit vector perpendicular to V, and we can use the formula we derived earlier:

T 5] 5 2 2
refy (D) =3 —2F = | 4 —=|| 4] 1 1
-2 2] 1=2j/ |2

Rotations

Consider the linear transformation 7 from R? to R? that rotates any vector X through
a fixed angle @ in the counterclockwise direction,” as shown in Figare 8. Recall
Example 2.1.5; where we studied a rotation through 6 = 7 /2.

T(x)

-y

Figure 8 Figure 9

Now consider Figure 9, where we introduce the auxiliary vector y, obtained

by rotating ¥ through /2. From Example 2.1.5 we know that if X = Ei , then
2

- —X . s
¥ = { xz] . Using basic trigonometry, we find that
!

T(F) = (cos6)E + (sin®)y = (cos§) [ﬂ + (sin) {_iﬂ
2

[(cosB)xy — (sind)xy
| (sin@)x; + (cosb)xy

: ' _ [eos# —sind] [x
: T lsing  cosf| |x;
_[cosé —sind z
|sin@  cosf}|

$We can define a rotation more formally in terms of the polar coordinates of %. The length of T (%)
equals the length of ¥, and the polar angle (or argament) of T (¥} exceeds the polas angle of X by 6.
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Theorem 2.2.3

EXAMPLE 4

EXAMPLE 5

This computation shows that a rotation through 6 is indeed a linear gransformation;

with the matrix
cosf ~sinb
sin & cosf |’

Rotations
The matrix of a counterciockwise cotation in B? through an angle & is

cosd —sinf
sinf cosd |’

Note that this magrix is of the form [’Z mz] _where a2 + b* = 1. Conversely, any

matrix of this form represents a rotation. ]

The matrix of a counterclockwise cotation through /6 {or 307) is

[cos(n/ﬁ) ~—sin(rr/6)} 13-l
sin(r/6)  cos(m/6)) ~ 21 1 NETD

R ortions Combined with a Scaling
Examine how the linear transformation

- a —bi.
T(x)= L} a} X
affects our standard letter L. Here a and b are arbitrary constans.

Solution _ _
Figure 10 suggests that T represents a rolation combined with a scaling. Think polat

coordinates: This is a rotation through the phase angle 8 of vector Ej, combinet
with a scaling by the magnitude r = v a? - b* of vector [ﬂ To verify this clai

. . al ., .
algebraically, we can write the vector [ bl in polar coordinates, as

-t

L rsing |’

Figure 10
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[a] as iltlustrated in Figure 11. Then
b
. no a —b reosf  —rsind . cosf —sinf
¥ s : = P = . .

A b a rsind  pcosd siné cost

rcosd :

. fa —bi. , . . . .
Figure 1§ 1t turns out that matrix [ b a] is a scalar multiple of a rotation matrix, as claimed.

Theorem 2.2.4 Rotations combined with a scaling

. a . . . .
A matrix of the form L) al represerts a rotafion combined with a scaling.

More precisely, if r and 8 are the polar coordinates of vector [ﬂ , then [Z #ﬂ

represents a rotation through 6 combined with a scaling by r.

Shears

We will introduce shears by means of some simple experiments involving a ruler
and a deck of cards.®

In the first experiment, we place the deck of cards on the ruler, as shown in
Figure 12. Note that the 2 of diamonds is placed on one of the short edges of the
ruler. That edge will stay in place throughout the experiment. Now we lift the other
short edge of the ruler up, keeping the cards in vertical position at all times, The
cards will slide up, being “fanned out,” without any horizonial displacement.

Ruler

Figure i3

Figure 13 shows a side view of this transformation. The origin represents the
ruler’s short edge that is staying in place.

Ruler
Figure 13
Such a transformation T is called a vertical shear. If we focus on the side view

only, we have a vertical shear in R? (although in reality the experiment takes place
in space).

5Two hings for instructors:
» Use several decks of cards for dramatic effect.
« Hold the decks together with a rubber band to avaid embarrassing accidents.
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- X . :
Now let’s draw a vector x = Ll] on the side of our deck of cards, and let’s find
2

a formula for the sheared vector T(X), using Figure 14 as a guide. Here, k denoteg'
the slope of the ruler after the transformation:

ror=r() =l = S 0

Deck of Cards

Ruler
Figure 14

arbitrary constant.
Horizonial shears are defined analogously: consider Figure 15.

Ruler

Deck of
Cards

Figure 15

We leave it as an exercise to the reader to verify that the matrix of a horizonta
itk
shear is of the form l 01 ] . Take another look at part (¢) of Example 1.

Oblique shears are far less important in applications, and we will not conside
them in this introductory text, :

Theorem 1.2.5 Horizontal and vertical shears

The matrix of a horizontal shear is of the form [é ﬂ , and the matrix of a verticél

1
shear is of the form [ K ﬂ, where k is an arbitrary constant.

The Scottish scholar &’ Arcy Thompson showed how the shapes of related specie
of plants and animals can often be transformed into one another, using linear as We
as nonlinear transformations.” In Figure 16 he uses a horizontal shear to transform
the shape of one species of fish into another.

Medawar calk
the Bnglish

7Thompson, d*Arcy W., On Growth and Form, Cambridge University Press, 1917, P. B.
this “the finest work of literature in all the annals of science that have been recorded in

tongue.”
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Argyropelecus olfersi.

Sternoptyx diaphana.

Figure 16

EXERCISES 2.2

GOAL Use the matrices of orthogonal projections, re-
flections, and rotations. Apply the definitions of shears,
orthogonal projections, and reflections.

1. Sketch the image of the standard L under the linear trans-

formation
- 3 1} .
T(x}) = L 2} X.

2. Find the matrix of a rotagion through an angle of 60° in
the counterclockwise direction.

(See Example 1.)

3. Consider a linear transformation T from R? to ®3, Use
T(e;) and T{&2) to describe the image of the unit square
geometrically.

@Interpret the following linear transformation geometii-

" cally:
. 1]
T(x)y= E‘“Ii 11 X.

5. The matrix
~0.8 0.6
0.6 —0.8
represents a rotation. Find the angle of rotation (in

radians).

@Let L be the line in &3 that consists of all scalar multi-
2

ples of the vector ;1! . Find the orthogonal projection
2

of the vector | 1| onto L.

1
7. Let L be the line in B3 that consists of ail scalar muiti-
2 1
plesof | 11.Findthe reflection of the vector | 1| about
2 1

the line L.

. Interpret the following linear transformation geometri-

cally:
o O =1y
Tix) = L“l 0] X.

. Interpret the following linear transformation geometzi-

cally:
" I 0
T(x) = {j l-bx.

A0.UFind the matrix of the orthogonal projection onto the
’ line L in B? shown in the accompanying figure:

A 7

H

e i

11. Refer to Exercise 10. Find the matrix of the reflection

about the line L.

12. Consider a line L in the plane, running through the ori-

. . wy .
gin. If w = wl is a nonzero vector parallel to L, show
2

- . - .
that the matrix of projz () is
1 w% wi wz-é
2 | :

—Td 2
w%«’rwz Dy U ng

13. Suppose a line L in R? contains the unit vector

- u
M=H_
M3

Find the matrix A of the lnear transformation
T(%) = refy (X). Give the entries of A in terms of wy

. . b
and uy. Show that A is of the form E; al’ where

a? bt 1.
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@ Suppose a line L in ¥ contains the unit vector

i1
Ej = | Uz
U3
a. Find the matrix A of the iinear transformation
T(X) = proj (). Give the entries of A in terms
of the components i1, iz, 43 of i.
b, ‘What is the sum of the diagonaj entries of the matrix
A you found in part (a)7
15. Suppose a line L in R3 contains the vpit vector

iy

Find the matrix A of the linear ransformation T{X) =
refy (¥}. Give the eniries of A in terms of the components
1, g, uz of .

16. Let (%) = refy (¥) be the reflection about the line L in
R2 shown in the accompanying figure.
a. Draw sketches to Hlustrate that T is linear.
b. Find the matrix of T in terms of 6.

L
9 o

l

17. Counsider a mairix A of the form A= B z:‘t , where
42 + b2 = 1. Find two nonzero perpendicular vecfors
7 and i such that AT = U and A = —1 (write the
entrics of 7 and W in terms of @ and &} Conclude that
T(¥) = AF represents the reflection about the line L
spanned by ©.

. . . " 0.6 0.8 ...
. 3% = ,

18 The linear transformation T'(X) 08 —06 X is
a reflection about a line L (see Exercise 17). Find the
eguation of line L (in the form y = mx).

Find the matrices of the linear transformations from B to
®3 given in Exercises 19 through 23. Some of these trans-
formations have not been formally defined in the text. Use
common sense. You may assume that all these transforma-
tions are linear.

19. The orthogonal projection onto the x-y-piane.
@ The reflection about the x—z-plane.

21, The rotation about the z-axis through an angle of /2,
counterclockwise as viewed from the positive z-axis.

- )
(%3} The rotation about the y-axis through an angle &, coun-
terclockwise as viewed from: the positive y-axts,

23.

25,

The reflection about the plane y = .

Rotations and reflections have two remarkable proper-
ties: They preserve the length of vectors and the a
gle between vectors. (Draw figures itlustrating these
properties.) We will show that, conversely, any linear
transformation 7 from R? to R* that preserves length
and apgles is either a rotation or a reflection {about a
line).
a. Show thatif T(¥) = AX preserves length and angles,
then the two column vectors U and i of A must be
perpendicular unit vectors.

b. Write the first column vecior of A as U= {Z} s nofe 1

that a? -+ b? = 1, since ¥ is a unit vector, Show that - /
for a given ¥ there are two possibilities for w, the.’
second column vector of A. Draw a sketch showing. |
7 and the two possible vectors . Write the comgo
nents of # in terms of a and b. R
e. Show that if a linear transformation T from 2 to 2
preserves length and angies, then T is either a rota
tion or a reflection {about a line). See Exercise 17.

Find the inverse of the matrix [é ﬂ where k is an

arbitrary constant. Interpret your result geometrically.

# [26.|a. Find the scaling matrix A that transforms [ ﬂ int0

B

b. Find the orthogonal projection matrix B that tf_argé;

forms 2 into 2
3 o

¢. Find the rotation matrix C that wansforms [ 5 into

!

d. Find the shear matrix D that transforms {3 into

B 1

I

-]
[ U

e. Find the reflection matrix E that fransforms []

[-5
E

@ Consider the matiices A through E below.

=l 3

L_Jos 08
“log -06)° o 3

036 --0.48 ~0.8 0.6}
C”LOAS 0.64] b —[_0.6 -0.8,




Fill in the blanks in the sentences below.
We are told that there is a solution in each case.

Matrix represents a scaling.

Matrix represents an orthogonal projection.
Matrix represents a shear.

Matrix represents a reflection.

Matrix represents a rotation.

ﬂy@ Each of the linear transformations in parts (a) through

(e) carresponds to one (and oniy one) of the matrices A
through J. Match thern up.
a. Scaling b. Shear
d. Orthogonal Projection

0 0 2 1 —(.6 0.8
A= [0 1} = {1 o} €= Lo.s —mo.e‘l
70 1 0 0.6 0.8
b= {0 7} E= L3 1] F= [0.8 —«0.6}
0.6 056 2 -1 0 0
¢= [o.s 0.8} H“L 2} = {1 o}
0.8 0.6
I= [0.6 -0.8}

29 Let T be a function from B to R, and let L be a func-
tion from R" to R”. Suppose that L (T ()} = ¥ for all
¥inR™ and T(L(})) =7 forall § in R*.If T is a lin~
ear transformation, show that L is linear as well. [Hint:

i = T{LG)) + T(LG) = T{LE) + L@)}
since T is linear, Now apply L on both sides.]

¢. Rotation
e, Reflection

30. Find a nonzero 2 x 2 matrix A such that AX is parallel

to the vector 1} for all ¥ in R,

2

31. Find a nonzero 3 x 3 matrix A such that AX is perpen-
e

dicular to {2 |, for all ¥ in R3.

3

cosq -~ sin “1

Fr—
32/ Consider the rotation matrix D = { .
sin & cos cxj

- cos .
and the vecior v = Lin g}, where « and 8 are arbi-

trary angles.
cos(a + B)
sinfe + ﬁ)] '
b. Compute DF. Use the result to derive the addition
theorems for sine and cosine:

a. Draw a sketch to explain why Di = {

cosloe + By = ..., sinfe+B)=....

33, Consider two nonparallel fines Ly and Ly in R, Explain
why a vector ¥ in R? can be expressed uniquely as

ﬂ:ﬁ{w%ﬁ:)_,
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where ¥y is on L and U3 on Lp, Draw a sketch. The
transformation T{V) = U, is called the projection onto
Ly along L. Show algebraically that T is linear.

@ij One of the five given matrices represents an orthogonal
projection onto a line and another represents 4 reflec-
tion about a line. Identify both and briefly justify your

choice,
) 1 2 2 Y 1 1 1
12 2 1 R B |
121 1] (22
C::-?; 1 2 1}, me;j 2 1 2,
i1 21 2 021

l'wi 2
E=— PR 2
3_2 —1

35. Let T be an invertible linear transformation from R to
R®2. Let P be a parallefogram in R? with one vertex at
the origin. Is the image of P a parallelogram as well?
Explain. Draw a sketch of the image.

bo =

X2

LT

Ral

‘E’ﬁi’g Let T be an invertible linear transformation from R? to
~" &2 et P be aparallelogram in &2, 15 the image of P a
patallelogram as well? Explain.

IP

] =

X3

37. The trace of a matrix is the sum a + o of its

b
d
diagonal entries. What can you say about the trace of a
2 % 2 matrix that represents a(n)

a. orthogonal projection b, reflection about a line
¢. rotation d. (horizontal or vertical) shear.

In three cases, give the exact value of the trace, and in
one case, give an interval of possible values.
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o . _ {inear trans : -1 :
(58] The determinan of & matix {a b] s ad — be (we the linear transformation defined by A~ geometrically.
et c d Explam.

have seen this quantity in Exercise 2.1. 13 ajready). Find 47. Let T bea linear transformation from &2 1o B2, Consider

the determinant of a matrix that represents a(n) the fanction

a. orthogonal projection  b. reflection about a line

¢. rolation d. (horizontal or vertical) shear. cos(?) { (1)

8 -8
What do your answers tell you about the invertibitity of fit)y= (T { sin (ﬂ}) - (T L ;:)2?;;\) ,

these mairices?

39, Describe each of the linear transformations defined by
the mairices in parts (&) through (c) geometrically, as
a well-known transformation combined with a scaling. a.
Give the scaling factor in each case.

from R to B. Show the following:
The function f(f) is continuous. You may take for

granted that the funcrions sin(t) and cos(1) are contin: |
wous, and also that sums and products of continuous ¢

a. B Q B. [ i (;] functions are continuous.
‘ b. f(x/2) =—f(0)

3 4 ¢c. There exists a number ¢ between 0 and /2 such

¢ |4 -3 that f(c) = 0. Use the intermediate value theorem

of calculus, which tells us the following: I a func-
40, Let P an'fi 8] bze two pemendicglar lines inﬂIR{Z. For tion g(z) is continuous fora =< 7 = b, and L'is
a vector ¥ in R, what is proj plx) + projg{x)? Give a number between g{a) and g(b), then there exidh
your answer in terms of #. Draw a sketch to Justify your ai least one number ¢ between a and b such that:

ANSWEL. gloy = L. i

d. There exist two perpendicular unit vectors U afd
T, in R? such that the vectors T(0y) amd T(02) ate’
perpendicular as weil. See the accompanying ﬁgu_{" '
(Compare with Theorem 833 fora generalizatidg.) :

41. Let P and O be two perpendicular fines in R2. For a
vecior & in B2, what is the relationship between refp (%)
and refo {(¥)7 Draw a sketch to justify your answer.

42. Let T(#) = proj; (X} be the orthogonal projection onto
a line in B2, What is the relationship between T(X) and

T (T{i)) 9 Justify your answer carefully. xh /'_,Z\ ok
43, Use the formula derived in Exercise 2.1.13 to find the 5
inverse of the rotation matrix : T(5,)
. i
_jcosd ~gin @ i
- { siné  cos 9} ' : . .

X \&
T(3y)

Interpret the linear transformation defined by A~Y geo-
metrically. Explain.

48. Refer to Exercise 47. Consider the linear tral

44. A nonzero matrix of the form A = {a mb] represents .
b a formation
a rotation combined with a scaling. Use the formula de-
rived in Exercise 2.1.13 to find the inverse of A, Interpret . 0 47 .
the linear transformation defined by A~ geometzically. Tix) = [5 '"3} X
Explain.

Find the function f(1) defined in Exercise 47, gfaﬁ

45. Amatrixof the form A = 4 b , where at+h? =1, )
b —a (using technology), and find a number ¢ betweel

represents areflection about a line (see Exercise 17). Use /2 such that f(¢) = 0. Use your answer 10 ﬁEd
the formula derived in Exercise 2.1.13 to find the inverse perpendicular unit vectors U1 and iy such that T (81}
of A. Explain. T (i) are perpendicular. Draw a sketch. _
& Tt . b 49. Sketch the image of the unit circl der the linear trd
E {f&fj A nonzero matrix of the form A = R _al repre- formation imag ungt crrele i ;

sents a reflection about a line L combined with a scaling,
(Why? What is the scaling factor?y Use the formula de- T = 5 0} -
rived in Fxercise 2.1.13 to find the inverse of A. Interpret M= 2 i




Ly, S gp. Let T bean invertible linear transformation from R 10
' : R2, Show that the image of the unit circle is an ellipse

dor centered at the origin.8 [Hint: Consider two perpendic-
: alar unit vectors U1 and 75 such that T () and T ()

' are perpendicular.] (See Exercise 47d.) The unit circle

consists of all vectors of the form

7 = cos{t)¥; +sin{f)v2,

where f i a parameter.

51. Let iy and iy be two nonparallel vectors in ®2. Con-

2.3 Matrix Products &9

for
in- sider the curve C in R? that consists of all vectors of
us the form cos() + sin{t)is, where ¢ is a parameter. 52. Consider an invertible linear transformation T from RZ
Show that C is an ellipse. (Hini: You can interpret C to 2. Let € be an ellipse in R2. $how that the image of
as the image of the unit circle under a suitable linear ¢ under T is an ellipse as well. (Hinr: Use the result of
" transformation; then use Exercise 50.) FExercise 51.)
1C
em
-
is
hat ) ‘ ‘ )
e z Recall the composition of two functions: The composite of the functions y == sin{x)
nd ? z=cos(yy amdz= cos(y) is z = cos(sin(x)), as illustrated in Figure 1.
are Similarly, we can compose two linear transformations.
ire. To understand this concept, let’s return {0 the coding example discussed in
n. . ce X .
} Section 2.1. Recall that the position x = Ll} of your boat is encoded and that you
20 .
radio the encoded position y = B ﬂ to Marseille. The coding ransformation is
CLy2
- o . 1 2
y=A¥, with A= [3 nE
o Tn Section 2.1, we left out one detail: Your position is radioed on to Paris, as you
Vi would expect in a centrally governed country such as France. Before broadcasting
to Paris, the position ¥ is again encoded, using the linear transformation
- - 6 7
=B wi =
s Z Y th B {8 9
8 An ellipse in R centered at the brigin may be defined as a curve that can be parametrized as
cos(t)iby -+ sin(f)ty,
for two perpendicular vectors i and iy, Suppose the length of i exceeds the length of ;. Then we
) call the vectors i the semimajor axes of the ellipse and =il the semiminor axes.
1 1(; Comvention: Al cllipses considered in this text are centered at the origin unless stated otherwise.
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