- 1.3.63 This is the line parallel to \vec{w} which goes through the end point of the vector \vec{v} .
- 1.3.64 This is the line segment connecting the head of the vector \vec{v} to the head of the vector $\vec{v} + \vec{w}$.
- 1.3.65 This is the full parallelogram spanned by the two vectors \vec{v} and \vec{w} .
- 1.3[66] Write b = 1 a and $a\vec{v} + b\vec{w} = a\vec{v} + (1 a)\vec{w} = \vec{w} + a(\vec{v} \vec{w})$ to see that this is the line segment connecting the head of the vector \vec{v} to the head of the vector \vec{w} .
- 1.3.67 This is the full triangle with its vertices at the origin and at the heads of the vectors \vec{v} and \vec{w} .
- 1.3.68 Writing $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$ as $\vec{u} \cdot (\vec{v} \vec{w}) = 0$, we see that this is the line perpendicular to the vector $\vec{v} \dot{\vec{w}}$.
- 1.3.69 We write out the augmented matrix: $\begin{bmatrix} 0 & 1 & 1 & a \\ 1 & 0 & 1 & b \\ 1 & 1 & 0 & c \end{bmatrix} \text{ and reduce it to } \begin{bmatrix} 1 & 0 & 0 & \frac{-a+b+c}{2} \\ 0 & 1 & 0 & \frac{a-b+c}{2} \\ 0 & 0 & 1 & \frac{a+b-c}{2} \end{bmatrix}.$

So
$$x = \frac{-a+b+c}{2}$$
, $y = \frac{a-b+c}{2}$ and $z = \frac{a+b-c}{2}$.

1.3.70 We find it useful to let $s = x_1 + x_2 + \cdots + x_n$. Adding up all n equations of the system, and realizing that the term x_i is missing from the i^{th} equation, we see that $(n-1)s = b_1 + \cdots + b_n$, or, $s = \frac{b_1 + \cdots + b_n}{n-1}$. Now the i^{th} equation of the system can be written as $s - x_i = b_i$, so that $x_i = s - b_i = \frac{b_1 + \cdots + b_n}{n-1} - b_i$.

True or False

- Ch 1.TF.1 F, by Example 3a of Section 1.3
- Ch 1.TF.2 T, by Definition 1.3.7
- Ch 1.TF.3 T, by Theorem 1.3.4
- Ch 1.TF.4 F, by Theorem 1.3.1
- Ch 1.TF.5 F, by Theorem 1.3.4
- Ch 1.TF.6 F; As a counter-example, consider the zero matrix.
- Ch 1.TF.7 T, by Theorem 1.3.8
- Ch 1.TF.8 T, by Definition 1.3.9
- Ch 1.TF.9 T, by Definition.
- Ch 1.TF.10 F; Consider the equation x + y + z = 0, repeated four times.

Ch 1.TF.11 T; Find rref.

Ch 1.TF.12 T; Find rref

Ch 1.TF.13 F; Consider the 4×3 matrix A that contains all zeroes, except for a 1 in the lower left corner.

Ch 1.TF.14 F; Note that $A\begin{bmatrix}2\\2\end{bmatrix}=2A\begin{bmatrix}1\\1\end{bmatrix}$ for all 2×2 matrices A.

Ch 1.TF.15 F; The rank is 1.

Ch 1.TF.16 F; The product on the left-hand side has two components.

Ch 1.TF.17 T; Let $A = \begin{bmatrix} -3 & 0 \\ -5 & 0 \\ -7 & 0 \end{bmatrix}$, for example.

Ch 1.TF.18 T; We have $\begin{bmatrix} 1\\2\\3 \end{bmatrix} = 2 \begin{bmatrix} 4\\5\\6 \end{bmatrix} - \begin{bmatrix} 7\\8\\9 \end{bmatrix}$.

Ch 1.TF.19 T; The last component of the left-hand side is zero for all vectors \vec{x} .

Ch 1.TF.20 T; $A = \begin{bmatrix} 3 & 0 \\ 4 & 0 \end{bmatrix}$, for example.

Ch 1.TF.21 F; Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, for example. We can apply elementary row operations to A all we want, we will always end up with a matrix that has all zeros in the first column.

Ch 1.TF.22 T; If $\vec{u} = a\vec{v} + b\vec{w}$ and $\vec{v} = c\vec{p} + d\vec{q} + e\vec{r}$, then $\vec{u} = ac\vec{p} + ad\vec{q} + ae\vec{r} + b\vec{w}$.

Ch 1.TF.23 F; The system x = 2, y = 3, x + y = 5 has a unique solution.

Ch 1.TF.24 F; Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, for example.

Ch 1.TF.25 F; Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$, for example.

Ch 1.TF.26 T, by Exercise 1.3.44.

Ch 1.TF.27 F; Find rref to see that the rank is always 2.

Ch 1.TF.28 T; Note that $\vec{v} = 1\vec{v} + 0\vec{w}$.

Ch 1.TF.29 F; Let
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, for example.

Ch 1.TF.30 T; Note that $\vec{0} = 0\vec{v} + 0\vec{w}$

Ch 1.TF.31 F; If
$$A\begin{bmatrix}1\\2\\3\end{bmatrix}=\vec{0}$$
, then $\vec{x}=\begin{bmatrix}1\\2\\3\end{bmatrix}$ is a solution to $\begin{bmatrix}A:\vec{0}\end{bmatrix}$. However, since $\operatorname{rank}(A)=3$, $\operatorname{rref}\begin{bmatrix}A:\vec{0}\end{bmatrix}=\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&0\end{bmatrix}$, meaning that only $\vec{0}$ is a solution to $A\vec{x}=\vec{0}$.

Ch 1.TF.32 F; If $\vec{b} = \vec{0}$, then having a row of zeroes in rref(A) does not force the system to be inconsistent.

Ch 1.TF.33 T; By Example 3c of Section 1.3, the equation $A\vec{x} = \vec{0}$ has the unique solution $\vec{x} = \vec{0}$. Now note that $A(\vec{v} - \vec{w}) = \vec{0}$, so that $\vec{v} - \vec{w} = \vec{0}$ and $\vec{v} = \vec{w}$.

Ch 1.TF.34 T; Note that rank(A) = 4, by Theorem 1.3.4

Ch 1.TF.35 F; Let
$$\vec{u} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, for example..

Ch 1.TF.36 T; We use rref to solve the system $A\vec{x} = \vec{0}$ and find $\vec{x} = \begin{bmatrix} -2t \\ -3t \\ t \end{bmatrix}$, where t is an arbitrary constant. Letting t = 1, we find $\begin{bmatrix} \vec{u} \ \vec{v} \ \vec{w} \end{bmatrix} \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix} = -2\vec{u} - 3\vec{v} + \vec{w} = \vec{0}$, so that $\vec{w} = 2\vec{u} + 3\vec{v}$.

Ch 1.TF.37 F; Let $A = B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, for example.

Ch 1.TF.38 T; Matrices A and B can both be transformed into $I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Running the elementary operations backwards, we can transform I into B. Thus we can first transform A into I and then I into B.

Ch 1.TF.39 T; If $\vec{v} = a\vec{u} + b\vec{w}$, then $A\vec{v} = A(a\vec{u} + b\vec{w}) = A(a\vec{u}) + A(b\vec{w}) = aA\vec{v} + bA\vec{w}$.

Ch 1.TF.40 T; check that the three defining properties of a matrix in rref still hold. F; If $\vec{b} = \vec{0}$, then having a row of zeroes in rref(A) does not force the system to be inconsistent.

Ch 1.TF.41 T; $A\vec{x} = \vec{b}$ is inconsistent if and only if $\operatorname{rank}\left[A:\vec{b}\right] = \operatorname{rank}(A) + 1$, since there will be an extra leading one in the last column of the augmented matrix: (See Figure 1.16.)

Figure 1.16: for Problem T/F 41.

- Ch 1.TF.42 T; The system $A\vec{x} = \vec{b}$ is consistent, by Example 3b, and there are, in fact, infinitely many solutions, by Theorem 1.3.3. Note that $A\vec{x} = \vec{b}$ is a system of three equations with four unknowns.
- Ch 1.TF.43 T; Recall that we use $\operatorname{rref}\left[A:\vec{0}\right]$ to solve the system $A\vec{x}=\vec{0}$. Now, $\operatorname{rref}\left[A:\vec{0}\right]=\left[\operatorname{rref}(A):\vec{0}\right]=\left[\operatorname{rref}(B):\vec{0}\right]=\operatorname{rref}\left[B:\vec{0}\right]$. Then, since $\left[\operatorname{rref}(A):\vec{0}\right]=\left[\operatorname{rref}(B):\vec{0}\right]$, they must have the same solutions.
- Ch 1.TF.44 F; Consider $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$. If we remove the first column, then the remaining matrix fails to be in ref.
- Ch 1.TF.45. T; First we list all possible matrices $\operatorname{rref}(M)$, where M is a 2×2 matrix, and show the corresponding solutions for $M\vec{x} = \vec{0}$:

$$\begin{aligned} \operatorname{rref}(M) & & \operatorname{solutions of } M\vec{x} = \vec{0} \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & & \{\vec{0}\} \\ \begin{bmatrix} 1 & a \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} -at \\ t \end{bmatrix}, \text{ for an arbitrary } t \\ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} t \\ 0 \end{bmatrix}, \text{ for an arbitrary } t \\ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} & \mathbb{R}^2 \end{aligned}$$

Now, we see that if $\operatorname{rref}(A) \neq \operatorname{rref}(B)$, then the systems $A\vec{x} = \vec{0}$ and $B\vec{x} = \vec{0}$ must have different solutions. Thus, it must be that if the two systems have the same solutions, then $\operatorname{rref}(A) = \operatorname{rref}(B)$.