% i,zi
S
‘IPZ T‘LQ Q;%w\)‘qkue‘, ffbk!&ﬁ

DR Rr Y A P aky A ) %\Mci all Sm[dis $y

s. < A@ = Dy & hes ey Mo . pe(® ENESW v,

Soch o Scalar A s as a??aﬁ valve g;’/c_gsﬁwe,sfc»itf;fﬁ
e_i'?g,,.)\!m:{" Vo

CQ;. w!/\aﬁ’ 4 & e, ;%&H\?@J_‘kz}rs \rc;iuag - J@ %%M@W\Cﬁlliﬁ?

| 56 how  do  coe -REDE Sied flse‘m7
solve AU=AT S~ TV $3
=2 Av- Av =0
5 (A ALY =9
TS s js < have  mortaioial solo@ias dhegp

A T J>\tI:- P 5l be. 5:‘“‘3“3‘-"1"’*}'\

S‘t:g,fﬂ—: = qn §m§c‘y~3 g S A- AT
is ﬁ’ﬁpcaéiaﬁ . dhac s dee KA»’}(_L):@‘

Scep T (rToe,s A Scalar A S A-AL
1s SIP%J\C«{“ Hed all  Morers Y,

(A - ATV =T



é,)("- : rfwc! 4&&. &?%m\}aluas ai A - [‘ —-'\_x
1

3

5,03,,51 C.L\&Mcﬂc“e;ffs‘:‘:rc.. Poﬁaé >\Z‘W L{?\ 4
Az L Qﬁclfg. P 1 2)_

TR A o) | dee dec(A-ATY 35 o

PQ\“@; L«-mbf
Ae%hea Pl Loe. eall  Jt e charade st fml;éx

‘ __T,)qé“ %M,S mg eci/ga c.LaJ‘V, FQJB i ez "f)rpa &.;c?wu%i'ﬁ_

w1 \

& <

—~
- - —-L w‘i cz}
ex L. Fioud <he. @;ﬁwu@is af =
: & 1 f
L2 R
‘ -
/k"':“... <G X ‘ﬁ\ = e (‘0«,1% reole | 1)

B’\/ ’FT&A‘

(\m‘) G &> N X Mo Cmq 13 have o Ao re.
Shar A dicier edgen vals,

Qb\) G Nk M&a‘tﬁx @](»-34&5.5 Z‘*S <« J-Q-ﬂg«c- Spiez

@Eﬁw\?q\- C..Fos;;% m}a}blm\)

<§-\ ond fF Mm%ﬂ"?x aﬁfrj o dd Lﬂ%’ ot Jewst

esete B"\Gla»a‘ &2} @M‘J ql .



PRI,

iR :
ko . k_ _
—3 &c‘\} /A 16 an @.s%@-—“k}c«\ ;y’\ A k.. 2. %J y

pm i

-

e — Qa\ j:?- A s w»g?w(?uiw — ."5 g

d@wdq‘. O;Q A“l.

<€ :[i el 1S A Sm)q%,tlsm (\/%4-%3 ;\5
a ez.?cawdca\ e &A*v{j—-\)_

Tham jm A’. Le. op 230 wm“t;r::x. ‘ﬁﬂw A

Tt

Thm: i_m A be., ar x4 MW’W";’}X" T}ﬂw A

JRNEEEES—

Ps S?‘Mcad\aw 5 M=o VS

A &’éeﬁv@}.

Tt\ml feﬂ: A be o #rxp V’l&(:‘;’&’;\jf mf ﬁ-;?&’“"““*_l\’&j

thim!  Tew T ke as Axe wtangdan meod

R Y

'TL,@,._; ‘t")he,. e.;%gpqut.s a‘g T are rUF

é;&.%. q,,.stﬁes_



ff?m.c:o;lc,@fug | hdft‘)mmc’;ﬁ\m ;o,ﬁ C_ct.jéulu;‘_ é&u,‘ a;@_

814 (HAPTER 12 | Sequences and Series Scesara, Ladlhs | Loaxson
(a) Draw a time line {as in Example 1) to show that to set up ward the principal, and the remaining principal afier each ‘p;dy_::
an annuity in perpetuity of amount R per time period, the ment. The table below shows the first few entries in the amg,.
amount that must be invested now is tization schedule.
. R : ____5_”_ L -+ T g i T
Ap = 1+ (1 + i) + (0 + iy T+ ' Payment Total | Interest | Principal .Rgma;ﬂ;ﬁ' -

number | payment | payment | payment | -principal

where f is the interest Tate per time period.
(b) Find the sum of the infinite series in part (a) to show that ]2 Zéj g 2;’222 :giz gg’;g{fi;
R 3 72417 674.26 4991 8985138
4 724.17 673.89 50.28 89,801.10 |

A =

i

i

(¢} How much money must be invested now at 10% per year,

compounded annuaily, to provide an annuity in perpetuity After 10 years they have made 120 payments and are wonder

of $5000 per year? The first payment is due in one year. ing how much they still owe, but they have lost the amortiza- :
(@) How much money must be invested now at 8% per year, tien schedule.

compounded quarterly, to provide an annuity in perpetuity {a) How much do John and Mary still owe on their morigage)

of $3000 per year? The first payment is doe in one year. [Hint: The remaining balance is the present value of the

31, Amortizing a Mortgage When they bought their house, 240 remaining payments.] o
John and Mary took out a $90,000 mortgage at 9% interest, (b) How much of thezrrnext payment is interest, and how
repayable monthly over 30 years. Their payment is $724.17 muc}? goe-s_towar{j the principal?  [Hint: Since
per month (check this, using the formula in the text). The bank 9% + 12 = 0.75%. they must pay 0.75% of the
save them 4n amortization schedule, which is a table show-
ing how much of each payment is interest, how much goes to-

remaining principal in interest each moath.]

12.5 MATHEMATICAL INDUCTION

| Conjecture and Proof & Mathematical Induction

There are two aspects to mathematics—discovery and proof—and they are of equal im-
portance. We must discover something before we can attempt L0 prove it, and we cannot
be certain of its truth until it has been proved. In this section we examine the relationship
between these two key components of mathematics more closely.

¥ Conjecture and Proof

Let’s try a simple experiment. We add more and more of the odd numbers as foliows:

=1
1+3=4
| +3+5=9

1+3+5+7=16
1+3+5+7+9=25

What do you notice about the numbers on the right side of these equations? They are. i
fact, all perfect squares. These equations say the following:

The sum of the first 1 odd number is 1°.
The sum of the first 2 odd numbers is 27
The sum of the first 3 odd numbers is 3°.
The sum of the first 4 odd numbers is 4%,

The sum of the first 5 odd numbers is 5%.




L ¢
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This leads naturally 1o the following question: Is it true that for every natural number n, the
sum of the tirst 71 odd numbers is n*? Could this remarkable property be true? We could try
a few more numbers and find that the pattern persists for the first 6, 7, 8, 9, and 10 odd num-
bers. At this pomnt we feel quite sure that this is always true, so we make 2 conjeciure:

‘The sum of the first n odd numbers is r°.

Since we know that the nth odd numiber is 2n — 1, we can write this statement more pre-
cisely as

3 +54 -4+ {2n—1)=n°

Tt is important to realize that this is still a conjecture. We cannot conclude by checking a
finite number of cases that a property is true for all pumbers (there are infinitely many).
To see this more clearly, suppose someone tells us that he has added up the first trillion
odd numbers and found that they do nor add up to 1 trillion squared. What would you tell
this person? It would be silly to say that you're sure it’s true because you have already
checked the first five cases. You could, however, take out paper and pencil and start check-
ing it yourself, but this task would probably take the rest of your life. The tragedy would
be that after completing this task, you would still not be sure of the truth of the conjec-
ture! Do you see why?

Herein lies the power of mathematical proof, A proof is a clear argument that demon-
strates the truth of a statement beyond doubt.

¥ Mathematical Induction

Let’s consider a special kind of proof called mathematieal induction. Here is how it
works: Suppose we have a staternent that says something about alf natural numbers ». For
example, for any natural number n, let P{n) be the following statement:

P{n}:  The sum of the first # odd numbers is n°

Since this statement is about alf natural numbers, it contains infinitely many statements:
we will call them P(1), P(2). . ...

P(1): The sum of the first 1 odd aumber is 12

P(2}:  The sum of the first 2 odd numbers is 2%,

P(3}: The sum of the first 3 odd numbers is 3°.

How can we prove all of these statements at once? Mathematical induction is a clever way
of doing jost that. )
The crux of the idea is this: Suppose we can prove that whenever one of these state-
ments is true, then the one following it in the list is also true. In other words,
For every k. if P{k) is true, then P{k + 1) is true.

This is called the indection step because it leads us from the truth of one statement to the
truth of the next. Now suppose that we can also prove that

P{1} is true.
The induction step now leads us through the following chain of staterents:
P(1} is true, so P(2) is true.
P2} is true, so P(3) is true.
P{(3} is true, so P(4) is true.
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So we see that if both the induction step and P(1} aré proved, then statement Pln) i
proved for all n. Here is a summary of this important method of preof. N

. _..PRENCE?LE oF MRTREMM!CAL !NDU(TION

3 For cach natural number n let P(n) be a statement dependmg or7L, Supp{)se that
',thc foilowmg twe condmons are. satmﬁed

1. P(l) is true.” .
: 2. For every natmal number &, if P(k) is: true ﬁlen P(k + 1) is:friie; -

. '{'hen P{n) is: tme fm ali namra] mimberq 1

To apply this principle, there are two SEps:

Step 1 Prove that P(1) is true. .
Step 2 Assume that P(k) is true, and use this assumption to prove that Pk + 1) is l:rue
Notice that in Step 2 we do not prove that P(k) is true. We only show that if P(k) is

true, then P(k + 1) is also true, The assumption that P(k} is true is called the inguction:
hypothesis. ;

int

ROTES AT THE INDUCTION STEP

is Dunkels, Swaden.

rs of Mathematics.

SURE, AND THEN YOU COULD “Lm
CLIMB THE WHOLE LADDER JLL,

@1979 National Council of Teache
Used by parmission. Couriesy ot Andre

We now use mathematical induction to prove that the conjecture that we made al the
beginning of this section s true. ‘

EXAMPLE 1 | A Proof by Mathematical Induction

Prove that for ali natural numbers n,
1+3+5+-~+(2ﬂ—- 1y = n*

SOLUTION Let P(n) denote the statement 1 + 3 + 5+ -+ (20 — 1] = n*

Step 1 We need to show that P(1) is true. But P(1) is simply the statemnent that 1 = 1
which is of course true.

Step 2 We assume that P(k) is true. Thus our induction hypothesis is
1+3+5+ -+ (2~ 1)=
We want to use this to show that P(k + 1) is true, that is,
L4345+ o+ 2k 1)+ 2+ ) —1]=+1)

[Note that we get P(k + 1) by substituting k + | for each » in the statement
P(n}.] We start with the left side and use the induction hypothesis ¢ obtain i
right side of the equation:




’]‘ms equals % by the nduction

+ 1)

] Kk +
This equals ~~w§ ---------------- by the

. induction hypothesis

‘e
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1+ 3+ 354+ 2k—1)+ 20k + 1) ~ 1]
- PR35Sk (2 )] 2k 1) - 1] Group the frst & terms
AR 1) -1
=k [2k+ 2 - 1]
= k2 4+ 2k + |
= (k + 1)*

induction hypothesis
Diistributive Property
Simphify

Pactor

Thus P(k + 1) follows from P(k), and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical Induction
that P(r} is true for all natural numbers .

% NOW TRY EXERCISE 3 ]

EXAMPLE 2 | A Proof by Mathematical Induction
Prove that for every natural number »,
m{n + 1)

2

SOLUTION Let P{n) bethestatement | + 2 + 3 + -7 + n = p(n + 1)/2. We want
to show that P(n) is tree for all natural numbers .

142434 4=

Step 1 We need to show that P{1) is true. But P(1) says that

ey

and this statement is clearly true.
Step 2 Assume that P{k) is true. Thus our induction hypothesis is

k1)

We want to use this to show that P(k + 1) is true, that is,
(k+ D)[(k+ 1)+ 1}
2

So we start with the left side and use the induction hypothesis to obtain the
right side:

I+ 2434+ k+{k+1)=

T+2+3 %+ k4 (k+ 1)

=LA 2 34+ (k) Group the first & terms
k(k + 1)
= — + &+ 1) Induction hypothesis
k
k+ 1) 5 +1 Factor & + |

k+12 . ’
) 2 Common denominator

(k+1[{k+i)+ L]

Write kb + 2ask+ | + |

Thus P{k + 1) follows from P(k), and this completes the induction step.
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Having proved Steps 1 and 2, we conclude by the Principle of Mathemaﬁcal InduCtioﬁ
that P(n) is true for all natural numbers ». :

«. NOW TRY EXERCISE 5 m

The following box gives formulas for the sums of powers of the first n nafural nym,.
bers. These formulas are important in calculus. Formula 1 is proved in Exampie 2. Tpa
other formulas are alse proved by using mathematical induction (see Exercises fand9

12 ':

Eanl

fi

o
RLEAS

N

1t might happen that a statement P(n} is false for the first few natural numbers but try
from some number on. For example, we might want to prove that P{n) is true forn =
Notice that if we prove that P(3) is true, then this fact, together with the induction siep
would imply the truth of P(5), P(6), P(7}, . .. . The next example illustrates this point,

EXAMPLE 3 | Proving an Inequality by Mathematical Induction
Prove that 4n < 2" for all n% 5.
SOLUTION Let P(n) denote the statement 4n < 27,
Step 1 P(5) is the statement that 45 < 2% or 20 <¢ 32, which is true.
Step 2 Assume that P{k) is true. Thus our induction hypothesis is
Af < ¥
We get Pk & 1y by replacing n by We want to use this to show that P(k + 1) is true, that is,

k4 L in the statement Mn).
Ml + 1) < 21

BLAISE PASCAL {(1623-1662) is mechanical adding machine. in 1647, after writing a major treatise
‘considered one of the most versatife *. on the conic sections, he abruptly abandoned :mathematics because
minds in modern history. He was a writer  he felt that his intense studies were contributing to his ilf health, He
and philosopher as well as a gifted devoted himself instead to frivelous recreations such as gambiling,
£ 1 mathematician and physicist. Among his . 'but this only served to pigue his interest in probability. In 1654 he
% i contributions that appear in this book ‘miracutously survived.a carriage accident in which his horses ran off
z are Pascal’s triangle and the Principle of ~ & bridge.Taking this to be a sign from Gad, Pascal entered a
% Mathematical Induction. monastery, where he pursued theology and philosophy, writing his .
‘S Pascal’s father, himself a mathemati- tamous Pensées. He also continued his mathematical research. He
ol clan, befieved that his son should not valiled faith and intuition more than reason as the source of truth,
study mathematics until he was 15 or . deciaring that “the heart has its own reasons, which reason cannot

- 16.But at age 12, Blaise insisted on learning geometry and proved know,”
© most of its elementary theorems himself. At 19 he invented the first '




4k + 1)

. NOW TRY EXERCISE 21

T
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So we start with the left-hand side of the inequality and use the induction hy-
pothesis to show that it is Jess than the right-hand side. For k 2 5 we have

=4k + 4 Distributive Property
<2+ 4 [nduction hypothesis
<25+ 4k Because 4 -7 44

< 26 4 2k Induction ypothesis
=722

= b+l Property of exponents

Thus P(k + 1) follows from P(k), and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical Induction
that P(n) is true for all nataral numbers »n = 3,

@ -

12.5 EXERCISES

CONCEPTS

1. Mathematical induction is a method of proving that a statement

(i} We prove “P{k + 1) is true” 13

(i) ‘'We prove “If P(k) is true, then P(k + 1) s true”

14.

SKILLS
3-14 ® Use mathematical induction to prove that the formula is

1rue for all natural nambers n.

32+ A +6+ -+ n

16.
17,
18.

nln + 1}
n(3n — 1)

A1t 4+T o+ (B3 2)

2 19.
558+l +(3n+2 n3n + 7) 20-
=3, +... k S a—
; (3n +2) 2 291
6. ‘12.5_2'3 +.32 NN +n-’:?ﬂu})(2—nm_ﬂm}l 2.
: 6 23.
nln + y{n + 2)
FT12 2334+ b aln + L)E
: 3 24
aln +1)(2n + 7) 25

P2

3 3 k] . N 22
P{n} is true for all numbers n. In Step i we prove 10. 1430+ 57 +@n o1y = a2t - 1)
3 T4 e (908 = ol - 132
that — 1L 22+ 4° + 6 + + {20y =2+ 1)
: 2. Which of the following is true about Step 2 in a proof by 12. L + 1 + _ + o ! = 2
" mathematical induction? b2 243 pin+ 1) (n+ 1)

3.4
124224322 442 4 -+ n 2"
=2[1+(n—1)2"]

PA+2+22 4 427 =27 — ]

. Show that » + 7 is divisible by 2 for all natural numbers n,

Show that 3 — 1 is divisible by 4 for all natural numbers #.
Show that n? — n + 41 is odd for ail natural numbers n.

Show that n® — » + 3 is divisible by 3 for al} natural
aumbers #.

Show that 8% — 3% is divisible by 3 for ail natural numbers 7.
Show that 327 — 1 is divisible by 8 for all natural numbers .
Prove that n < 2" for all natural numbers »,

Prove that {r + 1)* < 2n° for all natural numbers n = 3.

Prove that if ¥ > —1, then {1 + x)" = | + nx for all natural
nnbers u.

. Show that 100nr = n? for all n = 1060.

. Leta,., = 3a, and @, = 5. Show that g, = 5 - 3" for ail nat-

ural numbers n.




