this process until you rin out of variables or equations.

Consider the example discussed on page 2:
P x4+ 2y +3z2=3%

x4 3y + 2z =34

x4 2y 4 z=26

We can solve the first equation for x:

x =39 - 2y —3z.

Then we substitute this equation into the other equations:

(39 — 2y — 37) + 3y + 2z = 34
330 — 2y —3z) + 2y + z= 26|

We can simplify:
| y—z= -5
im.4y — 8z = -911'
Now, y = z — 5, so that —4(z — 5) — 8z = —91, or
4 127 = —111.

111
We find that 7 = 5T = 025, Then
Yz S e 425,
and

x =39 -2y —3z=275.

i
L

Explain why this method is essentially the same as the
method discussed in this section; onty the bookkeeping
is different,

46. A hermit eats only two kinds of food: brown rice and yo-

gurt. The rice contains 3 grams of protein and 30 grams

of carbohydrates per serving, while the yogurt contains

12 grams of protein and 20 grams of carbohydrates.

a. If the hermit wants o take in 60 grams of protein
and 300 grams of carbohydrates per day, how many
servings of each item should he consume?

h. If the hermit wants to take in P grams of protein

and C grams of carbohydrates per day, how many
servings of each item should he consume?

47. I have 32 bills in my wallet, in the denominations of

US$ 1, 3, and 106, worth $100 in total. How many do I
have of each denomination?

Some parking meters in Milan, Italy, accept coins in the
denominations of 20¢, 50¢, and € 2. As an incentive pro-
gram, the city administrators offer a big reward (a brand
new Ferrari Testarossa) to any meter maid who brings
back exactly 1,000 coins worth exactly € 1,000 from the
daily rounds. What are the odds of this reward being
claimed anytime soon?

Matrices, Vectors, and Gauss—jordan Elimination

‘When mathematicians in ancient China had to solve a system of simultancous linear

equations such as”

3x +2ly—-3z= 0
£~6x— 2y — z =062},
L 2x— 3y +8z=32

they took alt the numbers involved in this system and arranged them in a rectangular
pattern (Fang Cheng in Chinese), as follows:®

3021 -3] 0
~6| -2 ~1]62
@ 23] 83

All the information about this system 1s conveniently stored in this array of numbers.
The entries were represented by bamboo rods, as shown below; red and black
rods stand for positive and negative numbers, respectively. (Can you detect how this

#This example is taken from Chapter 8 of the Nine Chapters on the Mathemarical Art; see page 1. Our
source is George Gheverghese Joseph, The Crest of the Peaceck, Non-European Roots of Mathematics,
2nd ed., Princeton University Press, 2000,

3 Actually, the roles of rows and columns were reversed in the Chinese representation.



number system works?) The equations were then solved in a hands-on fashion, by
manipulating the rods. We leave it to the reader to find the solution.

=0
T 1 I
1 I

Today, such a rectangular array of numbers,
3 21 -3 o
-6 =2 =1 62|,
2 -3 8 32]

=

is called a marrix.% Since this particular matrix has three rows and four columns, it
is called a 3 x 4 matrix (“three by four™).

The four columns of the matrix

NN

3 21 -3 0
The three rows of the matrix { -6 -2 -1 62
2 -3 8§ 32

Note that the first column of this matrix corresponds to the first variable of the
system, while the first row corresponds to the first equation.

It is customary to label the entries of a 3 x 4 matrix 4 with double subscripts
as follows:

ain ai 41z dig
A= an ax an axu
d3; 43y 43z dsg

The first subscript refers to the row, and the second to the column: The entry 4;; is
located in the Jth row and the jth column.

Two matrices A and B are equal if they are the same size and if corresponding
entries are equal: a;; = by;.

If the number of rows of a matrix A equals the number of columns (A isr x n),
then A is called a square matrix, and the entries a1y, @, ..., dy, form the (main)
diagonal of A. A square matrix A is called diagonal if all its entries above and below
the main diagonal are zero; that is, a;; = 0 whenever.i # j. A square matrix A is
called upper trianguiar if all its entries below the main diagonal are zero; that is,
a;; = (O whenever i exceeds j. Lower triangular matrices are defined analogously.
A matrix whose entries are all zero is called a zero marrix and is denoted by 0
{regardless of its size). Consider the matrices

' i, 2 0 0
A=123,B=12,C=(030,
4 5 6 3 4 {000

0 4

5 0 0
p=[2 3], e=|s 0 o}
3 2 1

€1t appears that the term marrix was first nsed in this sense by the English mathematician
1. 7. Sylvester, in 1850.



{a+x, b+y)
/ﬂs&"\

(a, b) *

Figure 2

The matrices B, C, D, and F are square, C' is diagonal, C and D are upper triangular,
and C and E are lower triangular.
Matrices with only one column or row are of particular interest.

Vectors and vector spaces
A matrix with only one column is called a column vector, or simply a vector. The
entries of a vector are called its components. The set of all column vectors with
n components is denoted by R™; we will refer to R” as a vector space.

A matrix with only one row is called a row vector.

In this text, the term vecior refers to column vectors, unless otherwise stated.
The reason for our preference for column vectors will become apparent in the

next section.

Examples of vectors are

= I o T )

a {column) vector in R4, and

1 s 5 3 7],

a row vector with five components. Note that the m columns of an » x m matrix are
vectors in R".

In previous courses in mathematics or physics, you may have thought about
vectors from a more geometric point of view. (See the Appendix for a summary of
basic facts on vectors.) Let’s establish some conventions regarding the geometric
representation of vectors.

Standard representation of vecfors
The standard representation of a vector

=[]

in the Cartesian coordinate plane is as an grrow (a direcied line segment) from
‘the origin to the point (x, v), as shown in Figure 1.

The standard representation of a vector in B? is defined analogously.

In this text, we will consider the standard representation of vectors, unless
stated otherwise.

Occasionally, it is helpful to translate (or shift) the vector in the plane (preserv-
ing its direction and length), so that it will connect $ome point (a, £} to the point
(a + x, b + v), as shown in Figure 2.

When considering an infinite set of vectors, the arrow representation becomes

. . . - . " xt .
impractical. In this case, it is sensible to represent the vector ¢ = {v} stmply by the

point {x, y), the head of the standard arrow representation of .

For example, the set of all vectors v = (where x ts arbitrary) can be

x
x+1
represented as the line y = x + 1. For a few special values of x we may still use the
arrow representation, as iHustrated in Figure 3,



Figure 3

In this course, it will often be helpful to think abeout a vector numerically, as a
list of numbers, which we will usually write in a column.

in our digital age, information is often transmitted and stored as a string of
numbers (i.e., as a vector), A section of 10 seconds of music on a CD is stored as
a vector with 440,000 components. A weather photograph taken by a satellite is
transmitted to Earth as a string of numbers.

Consider the system

2x ++ By +dz =2
2x + Sy + z=15].
dx + 10y — z=1

Sometimes we are interested in the matrix

2 8 4
205 1,
4 10 -1

which contains the coefficients of the system, called its coefficient matrix.
By confrast, the mairix

2 8 4 2
25 I 51,
4 16 -1 1

which displays all the numerical information contained in the system, is called its
augmented matrix. For the sake of clarity, we will often indicate the position of the
equal signs in the equations by a dotted line: ‘

2 8 4.2
2 5 115
4 10 —1 11

To solve the system, it is more efficient to perform the elinunation on the ang-
mented matrix rather than on the equations themsefves. Conceptually, the two ap-
proaches are equivalent, but working with the augmented matrix reguires less writing



yet is easier to read, with some practice. Instead of dividing an equation by a scalar,’
you can divide a row by a scalar. Instead of adding a multipie of an equation to
another equation, you can add a multiple of a row to another row.

As you perform elimination on the augmented matrix, you should always re-
member the linear system lurking behind the matrix. To illustrate this method, we
perform the elimination both on the augmented matrix and on the linear system it
represents:

2 3 4 2] =2 2x+ 8y 4+ 4dz= 2| +2
2 5 11 5 2x 4+ Sy+ 7= 5
4 10 =11 1 4y + 10y - z= 1
} Y]
14 2 1] x4+ dy+ 2z= 1 ‘
205 1] ~2(D) 24+ Sy+ z= 5] =20D
410 =1 1] —4D dx+ 10y— z= 1| -4
} 4
T4 2% 1] x4 dy+ 2z= 1
0 -3 =31 3| =(=3) ~3y — 3z= 3| =3
10 -6 -9 | —=3] —6y — 9z = -3
4 ¥
14 2% 11 —4@D x4+  4y+ 2z= 1 —4{D
0 1 11 —1 y+ z=-1
0 -6 -9 -3] +6(dbH —by — 9z=-=3| +6(D
) +
"1 0 -2+ 5 x — 2z= 5
0 1 11 -1 : y + = 1
0 0 -3 -9] (-3 ~3z=-9 £(-3)
\ ¥
10 =2 T +2@n x — 2z 5| +2(0D)
0 1 L=l —{ v+  z=-1| -
0 0 1 3 z= 3
Y 4
10 0 117 x = 11
0 0 1 3] 7= 3

The solution is often represented as a vector:

iRl

Thus far we have been focusing on systems of 3 linear equations with 3 un-
knowns. Next we will develop a technique for solving systems of linear equations
of arbitrary size.

"In vector and mairis algebra, the term scalar is synonymous with {real) number.



Here is an example of a system of three linear equations with five unknowns:

Xp — X + 4x5 = ’F

i

We can proceed as in the example on page 4. We solve each equation for the leading
variable: ‘

x1$2+JC2—4)C5l
Xy == 2 + xs5i.
x5 =23 + JC5l

Now we can freely choose values for the nonleading variables, xp = r and x5 = r,
for example. The leading variables are then determined by these choices:

X1 =241 4r, Xx3= 247, Xq = 3 F.

This system has infinitely many soiutions; we can write the solutions in vector form as

X 2 4t —4dr
Xa !

x3 | = |2 +r
X4 3 +r
X5 F

Again, you can check this answer by substituting the solutions into the original
equations, for example, x3 — x5 = 2+ ) —r = 2.

What makes this system so easy to solve? The following three properties are
responsible for the simplicity of the solution, with the second property playing a key
role:

» Pl. The leading coefficient in each equation is 1. (The leading coefficient is
the coefficient of the leading variable.)

s P2: The leading variable in each equation does not appear in any of the other
equations. (For example, the ieading variable x; of the second equation appears
neither in the first nor in the third equation.)

» P3: The leading variables appear in the “natural order,” with increasing indices
as we go down the system (xy, x3, x4 as opposed {0 x3, X1, x4, for example).

Whenever we encounter a linear system with these three properties, we can solve
for the leading variables and then choose arbitrary values for the other, nonleading
variables, as we did above and on page 4.

Now we are ready to tackie the case of an arbitrary system of linear equations.
We will illustrate our approach by means of an example:

2x1 4+ dxy — 2x3 + 204 +dxs =2
X1 2x2 — X3+ 2xa =4
13x; + 6xp — 2x3 + xg - 9x5 =1
| 551 + 102, — 4y + Sxe + 95 = 9

We wish to reduce this system to a system satisfying the three properiies (P1, P2,
and P3}; this reduced system will then be easy to solve. ‘

We will proceed from equation to equation, from top to bottom. The leading
variable in the first equation is x, with leading coefficient 2. To satisfy property P1,
we will divide this equation by 2, To satisfy property P2 for the variable x, we will
then subtract suitable multiples of the first equation from the other three equations



to eliminate the variable x; from those equations. We will perform these operations
both on the system and on the augmenied matrix.

2x) + day — 2x5 + 2x4 +das = 2|+ 2 2 4 -2 2 4; 20 +2

X1 -k 2xz — X3 -+ 2x4 = 4 1 2 —1 2 O 4
3x; + Ox7 — a3+ x4+ Qx5 = ] 3 6 -2 1 9; 1
Sx;+ 10xg —4dxs +5x24 +9x5= 9 _5 10 —4 5 91 9.~

+

X: + 2%y~ X3+ x4+ 2x5== ] "1 2 -1 1 2§ 1]

Xy 4+ 2xp — xa+ 2xy = 4] () 1 2 -1 2 0 ; 47 —(D
3xp - bxp —2x3 4+ x4 +9x5= 1| -3 {3 6 -2 1 9 E 11 -=3(N
S5x) 4+ 10xy — 4x3 + 5x4 -+ 9xs = 91 —5() _5 10 —4 5 9| 9_ —5(1)

\:
X1+ 2%~ x3 4+ xq o4 2xs = 1 T2~ 1 2 17
X4 —2xs = 13 0 0 O | ; 3
X3 — 2x4 4+ 3x5 = =2 0 0 1 =2 3 ;—2
X3 - Xg = 4 _0 0 I 0 —11 @«

Now on to the second equation, with leading variable x4 and leading coefficient
1. We could eliminate x4 from the first and third equations and then proceed to the
third equation, with leading variable x;. However, this approach would violate our
requirement P3 that the variables must be listed in the natural order, with increasing
indices as we go down the system. To satisfy this requirement, we will swap the
second equation with the third equation. (In the following summary, we wiil specify
when such a swap is indicated and how il is to be performed.)

Then we can eliminate x5 from the first and fourth equations.

Xy 2xg - xs b oxy b 2xs = 1] A4UD 1 2 -1 1 2 1l +dn
Xy — 2x4 4 3x5 = -2 0 0 1 -2 3 5w2
X5 —2xs= 3 00 0 1 -2! 3
X3 — xs== 4y (I} 10 0 1 0 —1 41 —n
¥
X1 -+ 2x — X4+ 5x5 = —1 1T 2 0 -1 5 }’——I—
x3 = 2%4 + 3x5 == 2 0 0 P -2 3 3_2
Xi —2x5 = 3 0 0 0 1 w23 3
2xs — dx5 = 65 MO 0 0 2 =41 6_

Now we turn our attention to the third equation, with leading variable x4, We
need to eliminate x; from the other three equations.

xX: + 2x; — Xy Sxs=-—10 +IH 71 2 0 —i 5 1‘ —17  =(Ih
X3 = 2xq4  3Bxs= -2 £2(00y |0 0O 1 -2 3 i =21 4201
Xg — 2xg = 3 O 0 0 T2 1} 3
2xg —dxs = 6 =200DH |H 0 0 2 —4 6_ —2{IIhH
i .
Xp -+ 2x0 + 3x5 = 2 1 2 0 0 3 z 2
X3 — X5 w4 0 0 1 0 -1 5 4
' Xe —2x5= 3 0 0 0 1] -2 i 3
0= 0 0 0 0O 0 61 0




Since there are no variables left in the fourth equation, we are done. Qur system
now satisfies properties P1, P2, and P3. We can solve the equations for the leading
variables:

x1:2——2x2—3x5
X3=4 “+ JC5§

Xq =3 -{-2)65;

If we let x; = ¢ and x5 = r, then the infinitely many solutions are of the form

. 2 -2t =3
X2 {

xa| = |4 + r
X4 3 +2r
X35 r i

Let us summarize.

Solving a system of linear equations
We proceed from equation to eguation, from top to bottom,

Suppose we get to the ith equation. Let x; be the leading variable of the
system consisting of the ith and all the subsequent equations. (¥ no variables are
left in this system, then the process comes to an end.)

 If x; does not appear in the ith equation, swap the ith equation with the first
equation below that does contain x ;.

« Suppose the coefficient of x; in the /th equation is ¢; thus this equation is of
the form ¢x; + .-+ = - - .. Divide the /th equation by c.

« Eliminate x; from all the other equations, above and below the ith, by sub-
tracting suitable multiples of the ith equation from the others,

Now proceed to the next equation.

If an equation zero = nonzero emerges in this process, then the system fails
to have solutions; the system is inconsistent.

When you are through without encountering an inconsistency, solve each
equation for its leading variable. You may choose the nonleading variables freely;
the leading variables are then determined by these choices.

This process can be performed on the augmented matrix. As you do so, just
imagine the linear system lurking behind it.
In the preceding example, we reduced the augmented matrix

2 4 2 2 42 1200 32
12 <1 2 04 0010 -1 4
M=13 6 21 9i1] © E=1g 001 23
510 -4 5 919 0000 0i0

We say that the final matrix £ is in reduced row-echelon form (rref).




Reduced row-echelon form
A matrix is in reduced row-echelon form if it satisfies all of the following
conditions:

- a. If a row has nonzero entries, then the first nonzero entry is a 1, called the
leading 1 (or pivor) in this row.
b. If a columm contains a leading 1, then all the other entries in that column are 0.

c. If a row contains a leading 1, then each row above it contains a leading 1
further to the left.

Condition ¢ implies that rows of (’s, if any, appear at the bottom of the matrix,

Conditions a, b, and ¢ defining the reduced row-echelon form correspond to the
conditions P1, P2, and P3 that we imposed on the system.
Note that the leading 1’s in the matrix

@200 3i2]
0 0o ;1E4
0 0@ ~213

0
6 ¢ 6 0 O

correspond to the leading variables in the reduced system,

'@'}-2362 + 3xs = %

—2}65

Here we draw the staircase formed by the leading variables. This s where the name
echelon form comes from. According to Webster, an echeton is a formation “like a
series of steps.”

The operations we perform when bringing a matrix into reduced row-echelon
form are referred fo as elementary row operations. Let’s review the three types of
such operations.

[

i

Types of elemmentary row operaftions

» Divide a row by a nonzero scalar,

« Subtract a multiple of a row from another row.
» Swap two rows.

Consider the following system:

X — 3xy - Sxa= -7
3x; — 1239 — 2x3 — 27x4 = =33]
~2xy 4 10xp -k 2x3 -+ 243y = 2907
—xy + 6xp+ x3+ ldxg= 17



The augmented matrix is
] -3 0 =51 -7
3 0-12 =2 =27 | -33
-2 10 2 24 29
-1 6 1 14 1 17

The reduced row-echelon form for this matrix is

1 0 0 110
0 1 0 210
0 0 1 3.0
0 0.0 01

(We leave it to you to perform the elimination.)
Since the last row of the echelon form represents the equation 0 = I, the system
is inconsistent. '

This method of solving linear systems is sometimes referred to as Gauss—Jordan
elimination, after the German mathematician Carl Friedrich Gauss (1777-1835; see
Figure 4), perhaps the greatest mathematician of modern times, and the German
engineer Wilhelm Jordan (1844-1899). Gauss himself called the method eliminatio
vulgaris. Recall that the Chinese were using this method 2,000 years ago.

AY539390845

7EHN DEUTSCHE MARK

Figure 4 Carl Friedrich Gaoss appears on an old German 10-mark note. {In fact, this is the
mirror image of a well-known porerait of Gauss.®)

How Gauss developed this method is noteworthy. On Janvary 1, 1801, the
Sicilian astronomer Giuseppe Piazzi (1746-1826) discovered a planet, which he
named Ceres, in honor of the patron goddess of Sicily. Today, Ceres is called a
dwarf planet, because it is only about 1,000 kilometers in diameter. Piazzi was able
to observe Ceres for 40 mights, but then he lost track of it. Gauss, however, at the
age of 24, succeeded in calculating the orbit of Ceres, ever though the task seemed
hopeless on the basis of a few observations. His computations were so accurate
that the German astronomer W. Olbers (1758-1840} located the asteroid on Decem-
ber 31, 1801. In the course of his computations, Gauss had to solve systems of 17
linear equations.” In dealing with this problem, Gauss also used the method of least

8Reproduced by permission of the Gesman Bundesbank.

*For the mathematical details, see I2. Teets and K. Whitehead, “The Biscovery of Ceres: How Gauss
Became Famous,” Mathematics Magazine, 72, 2 {Apri] 1999): 83-93.



squares, which he had developed around 1794, (See Section 5.4.) Since Gauss at first
refused to reveal the methods that led to this amazing accomplishment, some even
accused him of sorcery. Gauss later described his methods of orbit computation in
his book Theoria Motus Corporum Coelestium (1809).

The method of solving a linear system by Gauss—Jordan elimination is called
an algorithm.'° An algorithm can be defined as “a finite procedure, written in a fixed
symbolic vocabulary, governed by precise instructions, moving in discrefe Steps, 1,
2,3, ..., whose execution requires no insight, cleverness, intuition, inielligence, or
perspicuity, and that sooner or later comes {0 an end. (David Berlinski, The Advent
af the Algorithm: The Idea that Rules the World, Harcourt Inc., 2000).

Gauss—Jordan elimination is well suited for solving linear systems on a com-
puter, at least in principle. In practice, however, some tricky problems associated
with roundoff errors can occur.

Numerical analysts tell us that we can reduce the proliferation of roundoff errors
by modifying Gauss—Jordan elimination, employing more sophisticated reduction
techniques.

In modifying Gauss-Jordan elimination, an interesting question arises: If we
transform a matrix A into a matrix B by a sequence of elementary row operations
and if B is in reduced row-echelon form, is it necessarily true that B = rref(A)?
Fortunately {and perhaps surprisingly) this is indeed the case.

In this text, we will not utilize this fact, so there is no need to present the
somewhat technical proof. If you feel ambitious, try to work out the proof yourself
after studying Chapter 3. (See Exercises 3.3.84 through 3.3.87.)

10 The word algorithm is derived from the name of the mathematician al-Khowarizmi, who introduced
the term algebra into mathematics. (See page 1.}

EXERCISES 1.2

GOAL Use Gauss—Jordan elimination to solve linear xy+ 2x3 2x4 + 3x5 = 0
systems. Do simple problems using paper and pencil, and x3+3x +2x5 =0
p 7
use technology fo solve more complicated problems. ’ x5 A dxg - x5 =0
In Exercises 1 through 12, find all solutions of the equa- x5 =0
tions with paper and pencil using Gauss-Jordan elimina- . 3 _ql
tion, Show all your work. Solve the system in Exercise 8 @;} ¥+ 41,: + 8§: - UE
for the variables xy, x2, x3, X4, and xs. - !
x4 y—22=5] g5 Bxddy - z=8 x4+ 205 = xg =2
1. 2x 43y 4+ 4z =2 @§6x+sy—2zz3 9. jxp +2x x5 - xg =10
! . x;+2x2+ZX3 e X5+x622
x4+ y=1
! Lox+2y+3z=4 @ 2x =~ y =15} 4xy + 3xg + 2x3 — xa= 4
Ix +dy = 2 ’ﬁé\. Sxp+ 4+ 3 — xa= 4
a0 Qaf’ —2xy ~2xy — x3+4+ 2x4 = -3
N ¢§3 Mo Plag 4 6xp + dx3 + xg = 11
5. 2 3 -
X1+ X2 =0 Xy + 2x3 + 4dxq4 = -8
Xi +xs =10 I Xy~ 3x3 = x4= 6
X1 — Tx2 + x5-13E " 13x; + dxp — Bx3 + 8xg = 0
{E} x3 = Zxg = 2| — X+ 3x3 +dxy = —12
x4 4 x5 =1




{2x; — 3x3 A+ Txs 4+ Txg = 0

—2x] + x3 4+ 0x3 — bxs — 12xg =
@‘* X3 — 3x3 + x5+ 5?66w0|
el — 2x3 o+ xg x5+ x5 =0

2xy 4+ x2 — 3x3 + 8x5 + 7x6“0f

Solve the linear systems in Exercises 13 through 17. You
may use technology.

3x 4+ 1y + 197 = -2
13. 7x 4+ 23y + 3%z = 10
—dy - 3y~ 22= 6

e |3x 4 6y F Bz =22
14| 7x + 14y + 30z = 46
4x+ By+ Tz= 6

3x 4+ 5y 4+ 3z=125
15. | Tx+ 9y + 192 =65
—~4x 4+ 5y 4 11z = 5

3x;p 4+ 6x2 + 9x3 4+ Sxg + x5 = 53!
Lel Tay b Bxg 4 21x3 4 9xg 4 53x5 = 105
—4x%) — Bxp — 12x3 4+ S5x4 — 10x5 = 11

2x; + dxp + 3x3 + Sxgq + 6x5 = 37
dxy 4+ Bxp 4+ Txz + Sxq + 2x5 =74
17, | —2x; — 4dxp -+ 3x1 4 dxq — Sx5 =20

X1+ 2an 4+ 2xz — xg+ 2xs =20
5x) — 10x) + 4x3 + 6xq4 + dx5 = 24|

@ Determine which of the matrices below are in reduced
row-echejon form:

120 20 0o 1 2 0 3
0 61 30
a. b. [0 0 0 1 4
001t 0 000 0
000 01
1 2 0 3
¢ |00 0 0 d {0 1 2 3 4
0 0 1 2

18. Find all 4 x 1 matrices in reduced row-echelon form.

(\%QJ We say that two n X m matrices in reduced row-echelon
form are of the same type if they contain the same num-
ber of leading 1’s in the same positions. For exampie,

Soa = T

are of the same type. How many types of 2 x 2 matrices
in reduced row-echelon form are there?

21. How many types of 3 x 2 matrices in reduced row-
echelon form are there? (See Exercise 20.3

333 How many types of 2 x 3 matrices in reduced row-
echelon form are there? (See Exercise 20.)

23, Suppose you apply Gauss-Jordan elimination to a ma-
trix. Explain how you can be sure that the resulting
matrix is in reduced row-echelon form.

T
(yj Suppose matrix A is transformed into matrix B by means

of an elementary row operation. 1s there an elementary
row operation that transforms B into A? Explain.

25. Suppose matrix A is transformed into matrix B by ase-
quence of elementary row operations. Is there a sequence
of elementary row operations that transforms B into A?
Explain your answer. (See Exercise 24.)

26. Consider an n » m matrix A. Can you transform rref(A)
into A by a sequence of elementary row operations? (See
Exercise 25.)

27. Is there a sequence of elementary row operations that

transforms
i 23 1 0 0
4 5 6 into 0 1 017
7 8 9 0 0 0
Explain.

28. Suppose you subtract a multiple of an equation in a sys-
tem from another equation in the system. Explain why
the two systems (before and after this operation} have
the same solutions.

29. Balancing a chemical reaction. Consider the chemical
reaction

a NO7 + b HyO — ¢ HNO; + 4 HNOs,-

where a, b, ¢, and d are unknown positive integers. The
reaction must be balanced; that is, the number of atoms
of each element must be the same before and after the
reaction. For example, because the number of oxygen
atoms must remain the same,

2a +b=2c+3d.

While there are many possible values for a, b, ¢, and d
that balance the reaction, it is customary to use the smatl-
est possible positive integers. Balance this reaction,

Cv\ Find the polynomial of degree 3 [a polynomial of the
form f(t) = a + bt + ct* + dt’] whose graph goes
through the points (0, 1), {1, 0), {—1, 0}, and (2, —15).
Sketch the graph of this cubic.

31. Find the polynomial of degree 4 whose graph goes
through the points (I, 1},<(2, —1), (3, —59), (—1,3),
and (—2, —29). Graph this polynomial.

‘@,;) Cubic splines. Suppose you are in charge of the design
of a roller coaster ride. This simple ride will not make
any left or right turns; that is, the track lies in a verti-
cal plane. The accompanying figure shows the ride as
viewed from the side. The points (¢, b;) are given to
you, and your job is to connect the dots in a reasonably
smooth way. Let gy > a;.



33.

One method often employed in such design problems is
the technique of cubic splines. We choose f;{(r). a poly-
nomial of degree < 3, to define the shape of the ride
between {a;_1, b;j-1) and {a;, by), fori = 1,.. ., n.

(a, by}

" Froalt)
(@1 biq)
o

£

Obviously, itisrequired that f; (¢;) = b; and fila; -1} =
bi_j,fori = 1, ..., n. To guarantee a srnooth ride at the
points {a;, b;), we want the first and the second deriva-
tives of f; and f; ;1 to agree at these points:

fi’{ai} = f;';] (a;}
f,‘”(ai) = Jﬁq(fiiﬁ

and
fori=1,...,n~1.

Explain the practical significance of these conditions.
Explain why, for the convenience of the riders, it is also
required that ‘

fitao) = fylan) = 0.

Show that satisfying all these conditions amounts to
solving a system of linear equations. How many vari-
abies are in this system? How many equations? (Note: it
can be shown that this system has a unique solution.)

Find the polynomial f{r) of degree 3 suchthat f(1) =1,
F(2y =5, /(1) = 2,and f'(2) = 9, where f'(1) is the
derivative of f{z}. Graph this polynomial.

343 The dor product of two vectors

Xy Yi
R E? Loiwm
X == and y =

Xn ¥n

in R" is defined by
Eoy=x1y+xeyn o b X

Note that the dot product of two vectors is a scalar. We
say that the vectors ¥ and ¥ are perpendicular if Xy = 0.

35,

36.

37.

38.

Find all vectors in ®* perpendicular to

Draw a sketch.

Find all vectors in B* that are perpendicular to the three
veclors '

1 1 1

i 2 9

i’ 3 9

i 4 7
(See Exercise 34.)

Find all solutions x3, x2, x3 of the equation

b = x1Uy + %207 + 1303,

where
—8 1 2 4
0 il I P o I T 8 B
b == 21U yUp = 8 , V3 = 9
15 5 3 1

For some background on this exercise, see Exer-
cise 1.1.20.

Consider an economy with three industries, Iy, Iy,
13. What outputs x;, x3, x3.should they produce 1o sat-
isfy both consumer demand and interindustry demand?
The demands put on the three industries are shown in
the accompanying figure.

S L T —
- dndustry 7, - - Industrydy
:'--'-(pi_l_’tg::'t__x_j')_ 02 '._t'(t)_l_itpu:t:'x_z)_. §

02x, \9'3"3 6‘4"3/ 0.5%
o Industry 15
i (output xq) "

320 150 90
& Consurner -

I we consider more than three industries in an input—
outpul model, it is cumbersome to represent all the de-
mands in a diagram as in Exercise 37. Suppose we have
the industries [y, 1s, .. ., I, with outputs x1, x2, ..., Xp.
The outpur vector is



39.

40.

The consumer demand vector is

by
. by
b=1 7,

by

where b; is the consurner demand on industry I;. The
demand vector for industry I is

where a;; is the demand industry 1; puts on industry 1;,

for each $1 of output industry I; produces. For exam-

ple, azp = 0.5 means that industry Iy needs S0¢worth of

products trom industry 13 for each $1 worth of goods I

produces. The coefficient a;; need not be (: Producing

a product may require goods or services from the same

industry.

a. Find the four demand vectors for the economy in
Exercise 37.

b. What is the meaning in economic terms of x;9;7

¢. What is the meaning in “economic terms of
X103 + XaUp + -+ - + Xp¥p + b?

d. What is the meaning in economic terms of the equa-
tion

X101 4 Xolg + -+ Xptp + b = X7

Consider the economy of Israel in 1958.17 The three
industries considered here are

Iy :  agriculture,
I ' manufacturing,
Iy energy.

Outputs and demands are measured in millions of Israeli
pounds, the currency of Israel at that time. We are told
that

[13.2 6.293
b= |176], ¥ = |0014],
| 18 | 0.044
K¢ K
Tp= 0207, 3= |0017

0,01 | 0.216

a. Why do the first components of ¥ and U5 equal 07
b. Find the outputs xy,xs, x3 reguired to satisfy
demand.

Consider some particles in the plane with position vec-
tors £1, 3. ..., Ty and masses my, m, .. ., My.

Ty, Leontief, Input—-Cutput Economics, Oxford University Press,
1966.

41.

The position vector of the center of mass of this system
is

-

i o " -
Fem = “M“(mlrl A-mary ks maty),

where M =m1 +m2 + - + mp.

Consider the triangular plate shown in the accom-
panying sketch. How must a total mass of 1 kg be dis-
tributed among the three vertices of the plate so that

the plate can be supported at the point E} that is,

-

Fem =

2
LJ ? Assume that the mass of the plate itself

1s negligible.

The momentum P of a system of n particles in space with
masses my, Mo, ..., my and velocities U1, ¥, ..., Uy is
defined as :

-

P:m]{}l Y R T

Now consider two elementary particles with velocities

1 4
Uy = |1 and Uy =1 7
1 10



42,

43.

The particies coltide. After the collision, their respective For example, S(47) = 11.5 means that the time

velocities are observed to be from sunrise to sunset on February 16 4s 11 hours and
4 2 30 minutes. For locations close to the equator, the func-
iy =171 and im= |3]|. tion ${¢) is well approximated by a trigonometric func-
4 g tion of the form
, ‘ . ) (27” ) . (ert )
Assumne that the momentum of the system is conserved Sity=a+becos|[ — | +csinf — | .
throughout the collision. What does this experiment tell 363 365
you about the masses of the two particles? (See the ac- (The period is 365 days, or 1 year.) Find this approxima-
companying figure.) tion for Mumbai, and graph your solution. According to
Particle 1 this mode}, how long is the longest day of the year in
T Mumbai?
\#\ {\V‘L?Kyie is getting some flowers for Olivia, his Valentine.
T Being of a precise analytical mind, he plans to spend
Particle 2 T exactly $24 on a bunch of exactly two dozen flowers, At

the flower market they have lilies (83 each). roses ($2
each), and daisies ($0.50 each). Kyle knows that Olivia
- joves lilies; what is he to do?

Collision

. 45, Consider the equations
The accompanying sketch represents a maze of one-

way streets in a city in the United States. The traffic x4 2y + 32=4
volume through certain blocks during an hour has been x +ky + 4z = 6|,
measured. Suppose that the vehicles leaving the area dur- X2y + (k+Dr=6
ing this hour were exactly the same as those entering it. where k is an arbitrary constant.

JFK Street

a, For which values of the constant k does this system
Dunster Strect have a unique solution?

b. When is there no solution?
¢. When are there infinitely many solutions?

46. Consider the equations
¥+ 2kz =
x4+ 2y 4+ 67=21,
kx + 27 =
where k is an arbitrary constant.

120 ™ a. For which values of the constant £ does this system
Winthrop Street have a unique solution?

b. When is there no solution?
¢. When are there infinitely many sctutions?

Mt. Auburn Street

What can you say about the traffic volume at the
four locations indicated by a question mark? Can you
figure out exactly how much traffic there was on each

47. a. Find all solutions xj,x3,x3,x4 of the system
I 1
X = 5(x; +Xx3), X3 = 5{xz + x4}

block? If not, describe one possible scenario. For each b. In part ga}, is there a solution with x; = 1 and
of the four locations, find the highest and the lowest xg = 137
possibie traffic volume, 48. Foran arbitrary positive integer 1 > 3, find all solutions
Let §(t) be the length of the rth day of the year 2009 X1, %3, %3, ..., ¥ Of the simultaneous equations x =
in Mumbai (formerly known as Bombay), India (mea- $i+as)xs = 3(0+x) . Xug = 2 @2+ X).
sured in hours, from sunrise to sunset). We are given the Nﬁte that we are asked 10 solve the simultaneous equa-
following values of S{r): tions x; = 5(xp-1 + X)) fork=2,3, ... ,n— L
- — 49. Consider the system
_tise 24y =C
3y+ z=
47 115
74 12 x4 4r=C|
273 12 where C' 18 a constant. Find the smallest positive integer

C such that x, y, and z are all integers.



5@. Find all the polynomials f(r) of degree < 3 such that

FOY =3, f(D =2 f2) =0.and [ f()dt =4.0f

you have studied Simpson’s rule in calculus, explain the
result.)

Exercises 51 through 60 are concerned with conics. A conic
is a curve in B? that can be described by an equation
of the form f(x, y) = ¢; + 2% + 63y + c4x” + esxy +
cey® =0, where at least one of the coefficients ¢; is
nonzero. Examples are circles, ellipses, hyperbolas, and
parabolas. If k is any nonzero constant, then the equa-
tions flx,y) =0 and kf(x,y) = 0 describe the same
conic. For example, the equation —4 + x* 4 y* = 0 and
w12 + 3x% 4 3y% = 0 both describe the circle of radius
2 centered at the origin, In Exercises 51 through 60, find
all the conics through the given points, and draw a rough
sketch of your solution curve(s).

51, (0,0, (1,0), (2,0}, (0, 1), and (0. 2).
52. (0,0), 2,00, (0,2), {2,2),and (1,3),

53, (0,0), (1,0), (2,0), (3,0),and (1, 1),
(340,00, (1,13, 2,2), (3,3), and (1,0).

35, (0,00, (1,0), (0, 1), and (1, 1).

56. (0,0), (1,0), (0, 1), and (1, ~1).

57, (5,0), (1,2), (2, 1), (8, 1), and (2,9).

58. (1.0), (2,0, (2.2), (5.2), and (5.6).

59. (0,00, {1,0), (2,0), (0,1),(0,2), and (L, 1},
(603 0,0), 2,00, (0.2), (2.2),(1,3), and 4, 1.

61, Students are buying books for the new semester. Eddie
buys the environmental statistics book and the set theory
book for $178. Leah, who is buying books for herself and
her friend, spends $319 on two environmental statistics
books, one set theory book, and one educational psy-
chology book. Mehmet buys the educational psychol-
ogy book and the set theory book for $147 in total. How
much does each book cost?

@ Students are buying books for the new semester. Brigitte

¥ buys the German grammar book and the German novel,

Die Leiden des jungen Werther, for €64 in total. Claude

spends €98 on the linear algebra text and the German

grammar book, while Denise buys the linear algebra text

and Werther, for €76. How much does each of the three
books cost?

63. At the beginning of a political science class at & large
university, the students were asked which term, liberal or
conservative, best described their political views. They
were asked the same question at the end of the course,
to see whar effect the class discussions had on their
views. Of those that characterized themseives as “lib-
eral” inifially, 30% held conservative views at the end.
Of those who were conservative initially, 40% moved
to the liberal camp. It tumed out that there were just

as many students with conservative views at the end as
there had been liberal students at the beginning. Out of
the 260 students in the class, how many held liberal and
conservative views at the beginning of the course and
at the end? (No students joined or dropped the class
between the surveys, and they all participated in both
Surveys.)

)_J.‘—ﬂ-'ﬁql‘
@At the beginning of a semester, 35 students have signed

up for Linear Algebra; the course is offered in two
sections that are taught at different times, Because of
scheduling conflicts and personal preferences, 20% of
the stodents in Section A swilch to Section B in the
first few weeks of class, while 30% of the students in
Section B switch to A, resulting in & net ioss of 4 stu-
dents for Section B. How large were the two sections
at the beginning of the semester? No students dropped
Linear Algebra (why would they?) or joined the course
iate,

Historical Problems

Lt

65. Five cows and two sheep together cost ten fiang'? of
sitver. Two cows and five sheep together cost eight liang
of silver. What is the cost of a cow and a sheep, respec-
tively? (Nine Chapters,’> Chapter 8, Problem 7)

e,

66}3 If you seli two cows and five sheep and you buy 13 pigs,

7 you gain 1,000 coins. If you sell three cows and three
pigs and buy nine sheep, vou break even. If vou sell
six sheep and eight pigs and you buy five cows, you
lose 600 coins. What is the price of a cow, a sheep,
and a pig, respectively? (Nine Chapters, Chapler 8,
Problem ) .

67. You place five sparrows on one of the pans of a balance
and six swallows on the other pan; it turns out that the
sparrows are heavier. But if you exchange one sparrow
and one swallow, the weights are exactly balanced. All
the birds together weigh 1 jin. What is the weight of a
sparrow and a swallow, respectively? {Give the answerin
liang, with 1 fin = 16 liang.} (Nine Chapters, Chapter 8,
Problem 9)

68. Consider the task of pulling & weight of 40 dan'* up
a hill; we have one military horse, two ordinary horses,
and three weak horses at our disposal to get the job done.
Tt turns ouwt that the military horse and one of the ordi-
nary horses, pulling together, are barely able to pull the

A liang was about 16 grams at the time of the Has Dynasty.

See page 1; we present some of the problems from the Nire
Chapters on the Marhematical Art in & free translation, with
some additional explanations, since the scenarios discussed in a
few of these problems are rather unfamiliar to the modern
reader.

"1 dan = 120 jin = 1,920 liang. Thus a dan was about
30 kilograms at that time.



69.

76.

71.

72,

weight (but they could not pull any more). Likewise,
the two ordinary horses together with one weak hotse
are just able to do the job, as are the three weak horses
together with the military horse. How much weight can
each of the horses pull alone? (Nine Chapters, Chapter 8,
Problem 12)

Five households share a deep well for their water supply,
Each household owns a few ropes of a certain length,
which varies only from houschold to household. The
five households, A, B, C, D), and E, own 2, 3, 4, 3, and
& ropes, respectively. Even when tying all their ropes to-
gether, none of the households'alone are able to reach the
water, but A’s two ropes together with one of B’s ropes
just reach the water. Likewise, B’s three ropes with one
of C’s ropes, C’s four ropes with one of D’s ropes, D's
five ropes with one of E’s ropes, and E’s six ropes with
one of A’s ropes all just reach the water. How long are
the ropes of the various households, and how deep is
the well?

Commentary: As stated, this problem leads to a system
of 5 linear equations in 6 variables; with the given in-
formation, we are unable to determine the depth of the
well. The Nine Chapters gives one particular sofution,
where the depth of the well is 7 zhang,”® 2 chi, 1 cun,
or 721 cun (since 1 zhang = 10 chi and 1 ¢hi = 10 cun).
Using this particniar value for the depth of the well, find
the lengths of the various ropes.

“A rooster is worth five coins, a hen three coins, and
3 chicks one coin. With 100 coins we buy 100 of them.
How many roosters, hens, and chicks can we buy?”
(From the Mathematical Manual by Zhang Qiujian,
Chapter 3, Problem 38; 5th century A.D.)

Commentary: This famous Hundred Fowl Problem has
reappeared in countless variations in Indian, Arabic, and
European texts (see Exercises 71 through 74} it has
remained popular to this day (see Exercise 44 of this
section).

“Pigeons are sold at the rate of 5 for 3 panas, sarasabirds
at the rate of 7 for 5 panas, swans at the rate of 9 for
7 panas, and peacocks at the rate of 3 for 9 panas. A
man was fold to bring 100 birds for 100 panas for the
amusement of the King's son. What does he pay for each
of the various kinds of birds that he buys?” (From the
Guanita-Sara-Sangraha by Mahavira, India; 9th century
A.D.) Find one solution to this problem.

“A duck costs four coins, five sparrows cost one coin,
and a rooster costs one coin. Somebody buys 100 birds
for 100 coins. How many birds of each kind can
he buy?” (From the Key to Arithmetic by Al-Kashi;
15th century}

151 zhang was about 2.3 meters at that time.

73.

74.

75.

76.

77.

78.

“A certain person buys sheep, goats, and hogs, to the
mumber of 100, for 100 crowns; the sheep cost him % a
crown a-piece; the goats, 1%— crown; and the hogs 3%
crowns. How many had he of each?” (From the Elements
of Algebra by Leonhard Euler, 1770}

“A gentleman has a household of 100 persons and orders
that they be given 100 measures of grain. He directs that
each man should receive three measures, each woman
two measures, and each child half a measure. How many
men, women, and children are there in this household?”
‘We are told that there is at least one man, one woman, and
one child. (From the Problems for Quickening a Young

‘Mind by Alcuin [c. 732-804], the Abbot of St. Martins

at Tours, Alcuin was a friend and tutor to Charlemagne
and his family at Aachen.)

A father, when dying, gave to his sons 30 barrels, of
which 10 were full of wine, 10 were half full, and the
last 10 were empty. Divide the wine and flasks so that
there will be equal division among the three sons of both
wine and barrels. Find all the solutions of this problem.
(From Alcuin)

“Make me a crown weighing 60 minae, mixing gold,
bronze, tin, and wrought iron. Let the gold and bronze
together form two-thirds, the gold and tin together three-
fourths, and the gold and iron three-fifths. Tell me how
much gold, tin, brenze, and iron you must put in.” (From
the Greek Anthology by Metrodorus, 6th century A.D.)

Three merchants find a purse lying in the road. One mer-
chant says “If | keep the purse, I shall have twice as much
money as the two of you together.” “Give me the purse
and 1 shall have three times as much as the two of you
together” said the second merchant. The third merchant
said “1 shall be much better off than either of you if I
keep the purse, I shall have five times as much as the two
of you together.” If there are 60 coins {of equal value) in
the purse, how much money does each merchant have?
(From Mahavira)

3 cows graze | field bare in 2 days,

7 cows graze 4 fields bare in 4 days, and

3 cows graze 2 fields bare in 5 days.

it is assumed that each field initially provides the same
amound, x, of grass; that the daily growth, v, of the fields
remaing constant; and that all the cows eat the same
amot, z, each day (Quantities x, y, and z are mea-
sured by weight.) Find all the solutions of this problem.
{This is & special case of a problem discussed by [saac
Newton in his Arithmetica Universalis, 1707.)



