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{a) Bven function: reflectional symmetry
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(b} Odd function: rotational symmetry

FIGURE 3

FiGURE 4
Periodic function:
translational symmetry

M Guidelines for Sketching a Curve

The following checklist is intended as a guide to sketching a curve y = f(x) by hand. Not
every item is relevant to every function. (For instance, a given curve might not have an
asymptote or possess symmetry.) But the guidelines provide all the information you need
to make a sketch that displays the most important aspects of the function.

A, Domain It's often useful to start by determining the domain D of f, that is, the set of
values of x for which f(x) is defined.

B. Intercepts The y-interceptis f(0) and this tells us where the curve intersects the y-axis.
To find the x-intercepts, we set ¥y = 0 and solve for x. {You can omit this step if the equa-
tion is difficult to solve.)

C. Symmetry

(1) If f{—x} = f{x) for all x in D, that is, the equation of the curve is unchanged
when x is replaced by —x, then f is an even function and the curve is symmetric about
the y-axis. This means that our work is cut in half. If we know what the curve looks like
forx = 0, then we need oniy reflect about the y-axis to obtain the complete curve [see
Figure 3(a)]. Here are some examples: y = x%.y = x*, v = |x}, and y == cos x.

(it} If f(—x) = —f(x) for all xin D, then f is an odd function and the curve is sym-
metric about the origin. Agate we can obtain the complete curve if we know what it looks
like for x = 0. [Rotate 180° about the origin; see Figure 3(b).] Some simple examples
of odd functions are vy = x, vy = x°,y = x°, and y = sin x.

(iii) If f(x + p} = f(x) for all x in D, where p is a positive constant, then f is called
a periodic function and the smallest such namber p is calted the period. For instance,
y = sin x has period 27 and y = tan x has period . If we know what the graph looks
like in an interval of length p, then we can use translation to sketch the entire graph (see
Figure 4). ' '

D. Asymptotes

(1) Horizonial Asymptotes. Recall from Section 2.6 that if either lim, .. f{x) = L
or im—-= f(x} = L, then the line v = L is a horizontal asymptote of the curve y == f{x).
H it turns out that Hm .. f(x} = o (or ~=), then we do not have an asymptote ro the
right, but that is stili useful information for sketching the curve.

(it) Vertical Asymptotes. Recall from Section 2.2 that the line x = a is 2 vertical
agymptote if at least one of the following staterents is true:

i ELH{ flx) = limg flx) = w
Hm flx) = —o lim flx} = —o
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What follows are two completed sign diagrams.
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Notice that the sign diagram does not contain information
about the horizontal asymptote.



