Mathematics,
Morris  Kline

Oxford Press,

The Loss of Certainty

NY 1982

Preface

This book treats the fundamental changes that man has been forced to
make In his understanding of the nature and. role of mathematics. We
know today that mathematics does not possess the qualities that in the
past earned for it universal respect and admiration. Mathematics was
regarded as the acme of exact reasoning, a body of truths in itself, and
the truth about the design of nature. How man came to the realization
that these values are false and just what our present understanding is
constitute the major themes. A brief statement of these themes is pre-
sented in the Introduction. Some of the material could be gleaned
from a detailed technical history of mathematics. But those people who
are interested primarily in the dramatic changes that have taken place
will find that a direct, non-technical approach makes them more readily
accessible and more inteiligible.

Many mathematicians would perhaps prefer to limit the disclosure of
the present status of mathematics to members of the family. To air
these troubles in public may appear to be in bad taste, as bad as airing
one's marital difficulties. But intellectually oriented people must be
fully aware of the powers of the tools at their disposal. Recognition of
the limitations, as well as the capabilities, of reason is far more
beneficial than blind trust, which can lead to False ideclogies and even
to destruction.

I wish 10 express my thanks to the staff of Oxford University Press
for its thoughtful handiing of this book. I am especially grateful to Mr.
William C. Halpin and Mr. Sheldon Meyer for recognizing the impor-
tance of undertaking this popularization and to Ms. Leona Capeless
and Mr. Curtis Church for valuable suggestions and criticisms. To my
wife Helen I am indebted for many improvements in the writing and
for her care in proofreading.

I wish to thank also the Mathematical Association of America for
permission to use the quotations from articles in The American
Mathematical Monthly reproduced in Chapter XI.

Brooklyn, N.Y. M.K.
January 1980
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The gods have not revealed all thmgs from the beginning, . Introduction: The Thesis
But men seek and so find out better in time,

° & a

) . To foresee the future of mathematics, the true method is
Let us suppose these things are like the truth. 1o study its history and its present state. HENRI POINCARE

L L] £

But surely no man knows or ever will know

The truth about the gods and all I speak of.

For even if he happens to tell the perfect truth,

He does not know it, but appearance is fashioned over everything.
XENOFHANES

There are tragedies caused by war, famine, and pestilence. But there
are also intellectual tragedies caused by limitations of the human mind,
This book relates the calamities that have befallen man’s most effective
and unparalleled accomplishment, his most persistent and profound
effort to utilize human reason—mathematics,

Put in other terms, this book treats on a non-technical level the rise
and decline of the mdjesty of mathematics. In view of its present im-
mense scope, the increasing, even flourishing, mathematical activity,
the thousands of research papers published each year, the rapidly
growing interest in computers, and the expanded search for quantita-
tive relationships especially in the social and biclogical sciences, how
can we talk about the decline of mathematics? Wherein lies the trag-
edy? To answer these questions we must consider first what values won
for mathematics its immense prestige, respect, and glory.

From the very birth of mathematics as an independent body of
knowledge, fathered by the classical Greeks, and for a period of over
two thousand years, mathematicians pursued truth. Their accomplish-
ments were magnificent. The vast body of theorems about number and
geometrlc figures offered in :tself what appeared to be an almost end-
less vista of certainty.

Beyond the realm of mathematics proper, mathematical concepts
and derivations supplied the essence of remarkable scientific_theories,
Though the knowledge obtained through the collaboration of mathe-
matics and science employed physical principles, these seemed to be as
secure as the principles of mathematics proper because the predictions
in the mathematical theories of astronomy, mechanics, optics, and hy-
drodynaniics were in remarkably accurate accord with observation and
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experiment. Mathemarics, then, provided a firm grip on the workings
of nature, an understanding which dissolved mystery and replaced it by

fhbed law and order. Man could pridefully survey the world about him and

boast that he had grasped many of the secrets of the universe, which in
essence were a series of mathematical laws. The conviction that mathe-
maticians were securing truths is epitomized in Laplace’s remark that
Newton was a most fortunate man because there is just one universe
and Newton had discovered its laws.

To achieve its marvelous and powerful results, mathematics relied
upon a special method, namely, deductive proof from self-evident
principles called axioms, the methodology we still learn, usually in high
school geometry. Deductive reasonmg, by its very nature, giarantees
the truth of what is deduced if the axioms are truths. By utilizing this
seemingly clear, infailible, and impeccable logic, mathematicians pro-
duced apparently indubitable and irrefutable conclusions. This feature
of mathematics is still cited today. Whenever someone wants an ex-
ample of certitude and exactness of reasoning, he appeals o mathe-
matics.

The successes mathematics achieved with its methodology attracied
the greatest intellectuals. Mathematics had demonstrated the capacities,
resources, and strengths of human reason. Why should not this meth-
odology be employed, they asked, to secure truths in fields dominated
by authority, custom, and habit, fields such as philosophy, theology,
ethics, aesthetics, and the social sciences? Man's reason, so evidently ef-
fective in mathematics and mathematical physics, could surely be the
arbiter of thought and action in these other fields and obtain for them
the beauty of truths and the wuths of beauty. And so, during the
period called the Enlightenment or the Age of Reason, mathematical
methodology and even some mathematical concepts and theorems were
applied to human atfairs.

The most fertile source of insight is hindsight. Creations of the early
19th century, strange geometries and strange algebras, forced mathe-
maticians, reluctantly and grudgingly, to realize that mathematics

er_and the mathematical laws of ;ggmcwammnm.mb__ They
Ifimpd for example, that several differing geometries fit spatial experi-
ence equally well. All could not be truths. Apparently mathematical
design was not_jnherent in nature, orif it.was, man's mathematics was
Dot necessarily the accountof rhat design. The key to reality had been
lost. This realization was the first of the ealamities to befall mathemat-
ics.

The creation of these new geometries and algebras caused mathe-
maticians to experience a shock of another nature. The conviction that
they were obtaining truths had entranced them so much that they had
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rushed impetuously to secure these seeming truths at the cost of sound
reasoning. The realization that mathematics was not a body of truths
shook their conhidence in what they had created, and they undertook
to reexamine their creations. They were dismayed o find that the logic
of mathematics was in sad shape.

In fact mathematics had developed illogicali} Its iﬂ(}gicak develop-
ment contained not only false proofs, slips in reasoning, and madver-
tent mistakes which with more care could have been avoided. Such
blunders there were aplenty. The illogical development ako involved
inadequafe understanding of concepts, a failure w recognize all the
principles of logic required, and an inadequate rigor of proof; that 13,
intuition, physical arguments, and appeal 1o geometrical diagrams had
taken the place of logical arguments.

However, mathematics was still an effeciive description of nature.
And mathematics itself was certainly an atiractive body of knowledge
and in the minds of many, the Platonists especially, a part of realiy w0
be prized in and for itself. Hence mathematicians decided 1o supply the
missing logical structure and to rebuild the defective porvons. During
the latter half of the 19th century the moverment ofien described as the
rigorization of mathematics became the outstanding activity.

By 1900 the mathematicians believed they had achieved their goal
Though they had to be content with mathematics as an approximate
description of nature and many even abandoned the belief in the math-
ematical design of nature, they did gloat over their reconsiruction of
the logical structure of mathematics. But before they had finished
toasting their presumed success, contradictions were discovered in the
reconstructed mathematics. Commonly these contradictions were re-
ferred to as paradoxes, a euphemism that avoids facing the fact that
contradictions vitiate the logie of mathematics.

The resolution of the contradictions was undertaken almost immedi-
ately by the leading mathematicians and philosophers of the times. In
effect four different approaches to mathematics were concetved, for-
mulated, and advanced, each of which gathered many adherents.
These foundational schools all attempted not only to resolve the known
contradictions but to ensure that no new ones could ever arise, that s,
to establish the consistency of mathematics. Other issues arose in the
foundational efforts. The acceptability of some axioms and some prin-
ciples of deductive logic also became bones of contention on which the
several schools ok differing positions.

As late as 1930 a mathematician might perhaps have been content
with accepting one or another of the several foundations of mathemat-
ics and declared that his mathematical proofs were at least in accord
with the tenets of thar school. But disaster siruck again in the form of a
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farmous paper by Kurt Gédel in which he proved, among other signifi-
cant and disturbing vesults, that the logical principles accepted by the
several schools could not prove the consisiency of mathematics. This,
Gédel showed, cannot. be done without involving logical principles so
dubious as to question what 15 accomplished. Godel's theorems pro-
duced a debacle. Subsequent deyelopments brought further complica-
tions. For example, even the axiomatic-deductive method so highly
regarded in the past as the approach to exact knowledge was seen to be
flawed. The net effect of these newer developments was 1o add to the
variety of possible approaches to mathematics and to divide mathema-
ticians into an even greater number of differing factions.

The current predicament of mathematcs s that there is not one but
many mathematics and that for numercus reasons each fails to satisty
the members of the opposing schools. It is now: apparent that the con-
cept of a universally accepted, infallible body of reasoning—the majes-
tic mathematics of 1800 and the pride of man—is a grand illusion. Un-
certainty and doubt concerning the future of mathematics have
replaced the certainties and complacency of the past. The disagree-
ments about the foundations of the “most certain” science are both
surprising and, to put it mildly, disconcerting. The present state of
mathematics is a mockery of the hitherto deep-rooted and widely re-
puted truth and logical perfection of mathematics.

There are mathematicians who believe that the differing views on
what can be accepted as sound mathematics will some day be recon-
ciled. Prominent among these s a group of leading French mathema-
ticians who write under the pseudonym of Nicholas Bourbaki:

Since the earliest times, all critical revisions of the principles of mathe-
matics as a whole, or of any branch of it, have almost invariably fol-
lowed periods of uncertainty, where contradictions did appear and
had to be resolved, There are now twenty-five centuries during
which the mathemdtxcxans have had the practice of correcting their
errors and thereby seeing their science enriched, not impoverished;
this gives them the right to view the future with serenity.

However, many more mathematicians are pessimistic. Hermana
th;)ngone of the greatest mathematicians of this century, said in 1944

Mmmimnmm&mgmmgmm-

matics remains nix ¢ not kaow in what direction, | 51
final solution WWWWMWWQQ@M
at afl. “Mathe matizmg may well be a creative activity of man, like fan-
guage or music, of primary originality, whose historical decisions dely
complete objective rationalization,
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In the words of Goethe, “The history of a science is the science itself.”

The disagreements concerning what correct mathematics is and the
variety of differing foundations affect seriously not only mathematics
proper but most vitally physical science. As we shall see, the most well-
developed physical theories are entrely mathematical. {To be sure, the
conclusions of such theories are interpreted in sensuous or truly physi-
cal objects, and we hear voices over our radios even though we have
not the slightest physical understanding of what a radic wave 5.} Hence
scientists, who do not personally work on foundaiional problems,
must nevertheless be concerned about what mathematics can be
conhidently employed if they are not to waste years on unsound math-

ematics. papea T Frepy
The loss of truth, the constantly increasing complexity of mathemat TR Ealiadd

ics and science, and the uncertamly about which approach to mathe-

s and sclel
mattcs issecure have caused most mathematicians. to.abandon suem,e
Wlth a “plague on all your houses” they, have retreated to speg n

areas s of mathematics where_the methods of proof seem to be safe.
They also_find_problems. concocted, by humans..inore appealing and
mz_l_mgeabie than_those posed by naire.

The crises and conflicts over what sound mathematics is have also
discouraged the application of mathematical methodelogy to many
areas of our culture such as philosophy, political science, ethics, and
aesthetics. The hope of ﬁndmg objective, infallible laws and standards
has faded. The Age of Reason is gone,

Despite the unsatisfactory state of mathematics, the variety of ap-
proaches, the disagreements on accepiable axioms, and the danger that
new contradictions, if discovered, would invalidate a great deal of
mathemartics, some mathematicians are still applying mathematics to
phys;caE phenomena and indeed extending the applied felds 1o eco-
nomics, hiology, and sociology. The continuing effectiveness of mathe-
matics suggests two themes. The(rst % that effectiveness can be used
as the criterion of correctness. Of course such a criterion is provisional.
What is considered correct today may prove wrong in the next applica-

tion, (i S W TS

Thefeconditheme deals with a_mystery. In view of the disagreements
about what sound mathematics is, why is it gffective ar all? Ave we per-
forming miracles with imperfect tools? If man has been deceived, can
nature also be deceived into yielding to man's mathematical dictates?
Clearly not. Yet, do not our successful voyages to the moon and our ex-
plorations of Mars and }upiter, made possible by technology which u-
self depends heavily on mathematics, confirm mathematical theories of
the cosmos? How can we, then, speak of the artificiality and varieties of
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mathematics? Can the body live on when the mind and spirit are bewil-
dered? Certainly this is true of human beings and it is true of mathe-
matics. It behooves us therefore to learn why, despite its uncertain

foundations and  despiter the conflicting theories of mathematicians,
mathematics has proved to be so incredibly elffective.

] AT ;
The, Grwaks ' Philecephers
i mc%ma‘% 5,

I

The Genesis of Mathematical Truths

Thrice happy souls! to whom “twas given to rise
To truths like these, and scale the spangled skies!
Far distant stars to clearest view they brought,
And girdled ether with their chains of thought.
So heaven is reached—not as of old they tried
By mountains piled on mountains in their pride.
OVID

Any civilization worthy of the appelation has sought truths. Thoughtful
people cannot but try to understand the variety of natural phenomena,
10 solve the mystery of how human beings came to dwell on this earth,
to discern: what purpose life should serve, and to discover human des-
tiny, In all early civilizations but one, the answers 1o these questions
were given by religious leaders, answers that were generally accepted.
The ancient Greek civilization is the exception. What the Greeks dis-
covered—the greatest discovery made by man—is the power of reason.
It was the Greeks of the classical period, which was at its height during
the years from 600 to 300 B.c,, who recognized that man has an in-
tellect, a mind which, aided occasionally by observation or experi-
mentation, can discover truths.

What led the Greeks to this discovery is a question not readily an-
swered. The initiators of the plan to apply reason to human affairs and
concerns lived in lonia, a Greek settlement in Asia Minor, and many his-
torians have sought to account for the happenings there on the basis of
political and social conditions. For example, the Ionians were rather
freer to disregard the religious beliefs that dominated the European
Greek culture. However, our knowledge of Greek history before about
600 B.c. is so fragmentary that no definitive explanation is available.

In the course of time the Greeks applied reason to political systems,
ethics, justice, education, and numerous other concerns of man. Their
chief contribution, and the one which decisively influenced all later cul-
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tures, was to undertake the most imposing challenge facing reasom,
learning the laws of nature. Before the Greeks made this contribution,
they and the other civilizations of ancient times regarded nature as
chaotic, capricious, and even terrifying. Acts of nature were either
unexplained or attributed to the arbitrary will of gods who could be
propitiated only by prayers, sacrifices, and other rituals. The Babylon-
ians and Egyptians, who had notable civilizations as far back as 3000
8.c., did note some periodicities in the motiens of the sun and moon
and indeed based their calendars on these periodicities but saw.no
deeper significance in them. These few exceptional observations did
not influence their attitude toward nature.

The Greeks dared to look nature in the face. Their intellectual
leaders, if not the people at large, rejected traditional doctrines, super-
natural forces, superstitions, dogma, and other trammels on thought.
They were the first people to examine the multifarious, mysterious,

and complex operations of nature and to attempt to understand them. -

They pitted their minds against the welter of seemingly haphazard oc-
currences in the universe and undertook to throw the light of reason
upon them.

Possessed of insatiable curiosity and courage, they asked and an-
swered the questions that occur to many, are tackled by few, and are

resolved only by individuals of the highest intellectual caliber. Is there,

any plan underlying the workings of the entire universe? Are plants,
animals, men, planets, light, and sound mere physicai accidents or are
they part of a grand design? Because they were dreamers.enough to ar-
rive at new points of view, the Greeks fashioned a conception of the
universe which has dominated all subsequent Western thought.

The Greek intellectuals adopted a totally new attitude toward nature.
This attitude was rational, critical, and secular. Mythology was dis~
carded as was the belief that the gods manipulate man and the physical
werld according to their whims. The intellectuals eventually arrived at
the doctrine that nature is orderly and functions invariably according
to a grand design. All phenomena apparent o the senses, from the mo-
tions of the planets to the stirrings of the leaves on a tree, can be fitted
into a precise, coherent, intelligible pattern. In short, _hature s 1a-
tionally designed_and that design. though unaffected by human_ac-
tions, can be apprehended by man's.mingd.

" The Greeks were not only the first people with the audacity to con-
ceive of law and order in the welter of phenomena but also the first
with the genius to uncover some of the underlying patterns to which
nature apparently conforms. Thus they dared to ask for, and found,
design underlying the greatest spectacle man beholds, the motion of
the brilliant sun, the changing phases of the many hued moon, the
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brightness of the planets, the broad panorama of lights from the can-
opy of stars, and the seemingly miraculous eclipses of the sun and -
Moo,

it was the lonian philosophers of the 6th century B.c. who also made
the first attempts to secure a rational explanation of the nature and
functioning of the universe. The famous philosophers of this period,
Thales, Anaximander, Anaximenes, Heraclitus, and Anaxagoras, each
fixed on a single substance to explain the constitution of the universe,
Thales, for example, argued that everything is made up of water in ¢i-
ther gaseous, liquid, or solid state, and he attempted explanations of
many phenomena in terms of water—a not unreascnable choice be-
cause clouds, fog, dew, rain, and hail are forms of water and water is
necessary to life, nourishes the crops, and supports much animal life.
Even the human body, we now know, is 80 percent water,

The natural philosophy of the lomans was a series of bold specula-
tions, shrewd guesses, and britliant intvitions rather than the ocutcome
of extensive and careful sclentific investigations. These men were per-
haps a little over-eager to see the whole picture and so jumped 1o broad
conclusions. But they did discard the older, largely mythical accounts
and substituted materialistic and objective explanations of the design
and operation of the universe. They offered a reasoned approach in
place of fanciful and uncritical accounts and they defended their con-
tentions by reason. These men dared to tackle the universe with their
minds and refused to rely on gods, spirits, ghosts, devils, angels, and
other mythical agents who might maintain or disrupt nature’s happen-
ings. The spirit of these rational explanations can be expressed in the
words of Anaxagoras: “Reason rules the world.”

The decisive step in dispelling the mystery, mysticism, and seeming
chaos in the workings of nature and in replacing them by an under-
standable pattern was the application of mathematics. Here the Greeks
displayed an insight almost as pregnant and as original as the discovery
of the power of reason. The universe is mathematically designed, and
through mathematics man can penetrate o that design. The first major
group to offer a mathematical plan of nature was the Pythagoreans, a
school led by Pythagoras (c. 585-¢.5008.¢.) and rooted in southern Italy.
While they did draw inspiration and doctrines from the prevailing
Greek religion centering on purification of the soul and its redemption
from the taint and prison of the body, Pythagorean natural philosophy
was decidedly rational. The Pythagoreans were struck by the fact that
phenomena most diverse from a qualitative point of view exhibit iden-
tical mathematical properties. Hence mathematical properties must be
the essence of these phenomena. More specifically, the Pythagoreans
found this essence in number and in numerical relationships. Number
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was the first principle in their explanation of nature. All objects were
made up of elementary particles of matter or “units of existence” i
combinations corresponding to the various geometrical figures. The
total number of units represented, in fact, the material object. Number
was the matter and form of the universe. Hence the Pythagorean doc-
trine, “All things are numbers.” Since number is the “essence” of all ob-
jects, the explanation of natural phenomena could be achieved only
through number. .

This early Pythagorean doctrine is puzzling because to us numbers
are abstract ideas, and things are physical objects or substance. But we
have made an abstraction of number which the early Pythagoreans did
not make. To them, numbers were points or particles. When they
spoke of triangular numbers, square numbers, pentagonal numbers,
and others, they were thinking of collections of points, pebhbles, or
poin-like objects arranged in those shapes (Figs. 1.1-1.4).

Though historical fragments do not afford precise chronoclogical
data, there is no doubt that as the Pythagoreans developed and refined
their own doctrines they began to understand numbers as abstract con-
cepts, whereas objects were merely concrete realizations of numbers,
With this later distinction we can make sense of the staternent of Philo-
laus, a famous 5th-century Pythagorean: “Were it not for number and
its nature, nothing that exists would be clear to anybody either in itself
or in its relation to other things. . . . You can observe the power of
number exercising itself . . . in all the acts and the thoughts of men, in
all handicrafts and music.”

The reduction of music, for example, to simple relationships among
numbers became possible for the Pythagoreans when they discovered
two facts: first that the sound caused by a plucked string depends upon
the length of the string; and second that harmonious sounds are given
off by equally taut strings whose lengths are to each other as the ratios
of whole numbers, For example, a harmonious sound is produced by
plucking two equally taut strings, one twice as long as the other. In our
language the interval between the two notes is an octave. Another har-
monious combination is formed by two sirings whose lengths are in the
ratio 3 to 2; in this case the shorter one gives off a note, called the fifih,
above that given off by the first string. In fact, the relative lengths in
every harmonious combination of plucked strings can be expressed as a
ratio of whole numbers. The Pythagoreans also developed a tamous
musical scale. Though we shall not devote space to music of the Greek
period, we would fike to note that many Greek mathematicians, includ-
ing Euclid and Prolemy, wrote on the subject, especially on harmonious
combinations of sounds and the construction of scales.

The Pythagoreans reduced the motions of the planets to number

Figure 1.1
Triangular numbers

Figure 1.2
Square numbers

Figure 1.3
Pentagonal numbers

Figure 1.4
Hexagonal numbers
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relations. They believed that bodies moving in space produce sounds.
Perhaps this was suggested by the swishing of an object whirled on the
end of a string. They believed, further, that a body which moves rap-
idly gives forth a higher note than one which moves slowly. Now ac-
cording to their astronomy, the greater the distance of a planet from
the earth the more rapidly it4noved. Hence the sounds produced by
the planets varied with their distances from the earth and these sounds
all harmonized. But this “music of the spheres,” like all harmony, re-
duced to no more than number relationships and hence so did the mo-
tions of the planets. We do not hear this music because we are accus-
tomed to it from birth.

Other features of nature were “reduced” to number. The numbers 1,
2, 3, and 4, the tetractys, were especially valued. In fact, the Pythagorean
oath is reported to be: “I swear in the name of the Tetractys which has
been bestowed on our soul. The source and roots of the everflowing
nature are contained in it.” Nature was composed of fournesses such as
the four geometric elements, point, line, surface, and solid; and the
four materia} elements Plato later emphasized, earth, air, fire, and
water. ‘

The four numbers of the tetractys added up to ten and so ten was the
ideal number and represented the universe. Because ten was ideal
there must be ten bodies in the heavens. To fill out the required
number the Pythagoreans introduced a central fire around which the
earth, sun, moon, and the five planets then known revolved and a
counter-earth on the opposite side of the central fire. We do not see
this central fire and the counter-earth because the area of the earth on
which we live faces away from them. The details are not worth pursu-
ing; the main point is that the Pythagoreans tried to build an astronom-
ical theory based on numerical relationships.

Because the Pythagoreans “reduced” astronomy and music to num-
ber, music and astronomy came to be linked with arithmetic and geom-
etry, and all four subjects were regarded as mathematical. The four be-
came part of the school curricolum and remained so even into
medieval times, where they were labelled the guadrivium,

Aristotle in his Metaphysics sums up the Pythagorean identification of
number and the real world:

In numbers they seemed to see resembiances to things that exist and
come into being—more than in fire and earth and water (such and
such a modification of numbers being justice, another being soul and
reason, another being oppertunity—and similarly almost all other
things being numerically expressible); since, again, that the modifica-
tions and the ratios of the musical scales were expressible in
numbers;—since, thexn, all other things seemed in their whole nature
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to be modelled on numbers, and numbers seered to be the first things
irr the whole of nature, they supposed the elements of numbers to be
the elements of all things, and the whole heaven to be a musical scale
and a number.

The natural philosophy of the Pythagoreans is hardly substantial.
Aesthetic considerations commingled with an obsession to find number
relationships certainly led to assertions transcending observational evi-
dence. Nor did the Pythagoreans develop any one branch of physical
science very far. One could justifiably call their theories superficial.
But, whether by luck or by intuitive genius, the Pythagoreans did hit
upon two doctrines which proved later to be all-important: the first is
that nature is built according to mathematical principles; the second
that number relationships underlie, unify, and reveal the order in na-
ture, Actually modern science adheres to the Pythagorean emphasis on
number, though, as we shall see, the modern doctrines are 2 much
more sophisticated form of Pythagoreanism,

The philosophers who chronologically succeeded the Pythagoreans
were as much concerned with the nature of reality and the underly-
ing mathematical design. Leuccipus (. 440 s.c) and Democritus
(c.460-.370 B.c.) are notable because they were most explicit in affirm-
ing the doctrine of atomism. Their common philosophy was that the
world is composed of an infinite number of simple, eternal atoms.
These differ in shape, size, hardness, order, and position. Every object
is some combination of these atoms. Though geometrical magnitudes
such as-a line segment are infinitely divisible, the atoms are ultimate, in-
divisible particles. Properties such as shape, size, and the others just
mentioned were properties of the atoms. All other properties such as
taste, heat, and color were not in the atoms but in the effect of the
atoms on the perceiver. This sensuous knowledge was unreliable be-
cause it varied with the perceiver. Like the Pythagoreans, the atomists
asserted that the reality underlying the constantly changing diversity of
the physical world was expressible in terms of mathematics. Moreover,
the happenings in this world were strictly determined by mathematical
laws. Lyenmiam

After the Pythagoreans the most influential group to expound and
propagate the docirine of the mathematical design of nature was the
Platonists, led, of course, by Plato. Though Plato (427-347 ».c.) ook
over somé Pythagorean doctrines, he was a master who dominated
Greek thought in the momentous 4th century s.c. He was the founder
of the Academy in Athens, a center which attracted leading thinkers of
his day and endured for nine hundred years.

Plato’s belief in the rationality of the universe is perhaps best ex-
pressed in his dialogue the Philebus.
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Protarchus: What question? .

Socrates: Whether all this which they call the universe is left to the
guidance of unreason and chance medley, or, on the contrary,
as our fath€érs have declared, ordered and governed by a mar-
vellous intelligence and wisdom.

Protarchus: Wide asunder are the two assertions, illustrious Socrates,
for that which you were just now saying to me appears to be
blasphemy, but the other assertion, that mind orders all things,
is worthy of the aspect of the world, and of the sun, and of the
moon, and of the stars and of the whole circle of the heavens;
and never will 1 say or think otherwise.

The later Pythagoreans and the Platonists distinguished sharply be-
tween the world of things and the world of ideas. Objects and rela-
tionships in the material world were subject 16 Tmperfections, change,
and decay and hence did not represent the ultimate truth, but there
was an ideal world in which there were absolute and unchanging
iruths. These truths were the proper concern of the philosopher.
About the physical world we can only have opinions. The visible and
sensuous world s just a vague, dim, and imperfect realization of the
ideal world. “Things are the shadows of ideas thrown on the screen of
experience.” Reality then was to be found in the ideas of sensucus,
physical objects. Thus Plato would say that there is nothing real in a
horse, a house, or a beawtiful woman. The reality is in the universal
type or idea of a horse, a house, or a woman. Infallible knowledge can
be obtained only about pure ideal forms, These ideas are in Fact con-
stant and invariable, and knowledge concerning them is firm and inde-
structible.

Plato insisted that the reality and intelligibility of the physical world
could be comprehended only through the mathematics of the ideal
world. There was no question that this world was mathematically struc-
tured. Plutarch reports Plato’s famous, “God eternally geometrizes,” In
the Republic, Plato said “the knowledge at which geometry aims is
knowledge of the eternal, and not of aught perishing and transient.”
Mathematical laws were not only the essence of reality but eternal and
unchanging. Number relations, too, were part of reality, and collections
of things were mere imitations of numbers. Whereas with the earlier
Pythagoreans numbers were immanent in things, with Plato they tran-
scended things. o

Plato went further than the Pythagoreans in that he wished not
merely to understand nature through mathematics but to substitute
mathematics for nature herself. He believed that a few penetrating
glances at the physical world would suggest basic truths with which
reason could then carry on unaided. From that point on there would
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be just mathematics. Mathematics would substitute for physical inves-
tigation.

Plutarch relates in his “Life of Marcellus” that Eudoxus and Archy-
tas, famous contemporaries of Plato, used physical arguments to
“prove” mathematical results. But Plato indignantly denounced such
proofs as a-corruption of geometry; they utilized sensuous facts in
place of pure reasoning. .

Plato’s attitude toward astronomy illustrates his position on the
knowledge to be sought. This science, he said, is not concerned with
the movements of the visible heavenly bodies. The arrangement of the
stars in the heavens and their apparent movements are indeed wonder-
ful and beautiful to behold, but mere observations and explanation of
the motions fall far short of true astronomy. Before we can attain to
this true science we “must leave the heavens alone,” for true astronomy
deals with the laws of motion of true stars in a mathematical heaven of
which the visible heaven is but an imperfect expression. He encouraged
devotion to a theoretical astronomy whose problems please the mind
and not the eye and whose objects are apprehended by the mind and
not by vision. The varied figures the sky presents to the eye are to be
used only as diagrams to assist the search for higher truths, We must
treat astronomy, like geometry, as a series of problems merely sug-

gested by visible things. The uses of astronomy in pavigation, calendar-
BIerest o

reckoning, and the measurement of time were gl.no i

Aristotle, though a student of Plats from whom he derived many
ideas, had a quite different concept of the study of the real world and
of the relation of mathematics to reality. He criticized Plato’s other-
worldliness and his reduction of science to mathematics. Aristotle was 2
physicist in the literal sense of the word. He believed in material things
as the primary substance and source of reality. Physics, and science
generally, must study the physical world and obtain truths from it
Genuine knowledge is obtained from sense experience by intuition and
abstraction. ‘These abstractions have no existence independent of
human minds.

Aristotle did emphasize universals, general qualities that are ab-
stracted from real things. To obtain these he said we “start with things
which are knowable and observable to us and proceed toward those
things which are clearer and more knowable by nature.” He took the
obvious sensuous qualities of objects, hypostatized them, and elevated
them to independent, mental concepts.

Where was mathematics in Aristotle’s scheme of things? The physical
sciences were fundamental. Mathematics helped in the study of nature
by describing formal properties such as shape and quantity. Also math-
ematics provided the reasons for facts observed in material phenom-
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ena. Thus geometry could provide the explanation of facts provided by
optics and astronomy, and arithmetical ratios could give the basis for
harmony. But mathematicai concepts and principles are definitely ab-
stractions from the real world, Because they are abstracted from the
world, they are applicable to it. There is a faculty of the mind which
enables us to arrive at these idealized properties of physical objects from
sensations and these abstractions are necessarily true.

This brief survey of the philosophers who forged and molded the
Greek intellectual world may serve to show that all of them stressed the
study of nature for comprehension, understanding, and appreciation
of the underlying reality. Moreover, from the time of the Pythagoreans
practically all philosophers asserted that nature was designed mathe-
matically, By the end of the classical period the docirine of the mathe-
matical design of nature was established and the search for mathemat-
ical laws had been instituted. Though this belief did not metivate all
later mathemarics, once accepted it was acted on by most of the great
mathematicians, eveni those who had no coniact with the belief. Of all
the triumphs of the speculative thought of the Greeks, the most truly
novel was their conception of the cosmos operating in accordance with
mathematical laws discoverable by human thought.

The Greeks, then, were determined to seek truths and in-particular
truths about the mathematical design of nature. How does one go
‘about seeking truths and guaranteeing that they are truths? Here, too,
the Greeks provided the plan. Though this evolved gradually during
the period from 600 to 300 s.c., and though there is some question as
to when and by whom it was first conceived of, by 800 B.c. it was per-
fected. .

Mathematics in a loose sense of the term, in the sense of utilizing
numbers and geometrical figures, antedates the work of the classical
Greeks by several thousand years. In this loose sense the term mathe-
matics includes the contributions of many bygone civilizations ameng
which the Egypuan and Babylonian are most prominent. In all of
these, except the Greek civilization, mathematics was hardly a distinct
discipline—it had no methodology nor was it pursued for other than
immediate, practical ends. It was a tool, a series of disconnected, simple
rules which enabled people to answer questions of daily life: calendar-
reckoning, agriculture, and commerce. These rules were arrived at by
trial and error, experience, and simple observation, and many were
only approximately correct. About the best one can say for the mathe-
matics of these civilizations is that it showed some vigor if not rigor of
thought and more perseverance than brilliance. This mathematics is
characterized by the word empirical. The empirical mathematics of the
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Babylonians and the Egyptians also served as a prelude to the work of
the Greeks. '

Though the Greek culture was not entirely free of outside infiu-
ences—Greck thinkers did travel and study in Egypt and Babylonia—
and though mathematics in the modern sense of the word had to un-
dergo a period of gestation even in the congenial intellectual atmo-
sphere of Greece, what the Greeks created differs as much from what
they took over as gold from tin.

Having decided to search for mathematical truths, the Greeks could
not build upon the crude, empirical, limited, disconnected, and, in
many instances, approximate results that their predecessors, notably
the Egyptians and Babylonians, had compiled. Mathematics itself, the
basic facts about number and geometrical figures, must be a body of
truths, and mathematical reasoning, aimed at arriving at truths about
physical phenomena, the motions of the heavens for example, must
produce indubitable conclusions. How were these objectives to be at-
tained?

The first principle was that mathematics was 1o _deal with abstrac-
tions. For the philosophers who molded Greek mathematics, truth by

"its very meaning could pertain only to permanent, unchanging entities
and relationships. Fortunately, the intelligence of man excited to reflec-
tion by the impressions of sensuous vbjects can rise to higher concep-
tions; these are the ideas, the eternal realities and the true object of
thought. There was another reason for the preference for abstractions.
If mathematics was to be powerful it must embrace in one abstract con-
cept the essential feature of all the physical occurrences of that concept.
Thus the mathematical straight line must embrace stretched strings,
ruler’s edges, boundaries of fields, and the paths of light rays. Accord-
ingly, the mathematical line was to have no thickness, color, molecular
structure, or tension. The Greeks were explicit in asserting that their
mathematics dealt with abstractions. Speaking of geometricians, Plato
said in The Republic:

Do you not know also that although they make use of the visible forms
and reason about them, they are thinking not of these, but of the
ideals which they resemble; not of the figures which they draw, but of
the absolute square and the absolute diameter . . . they are really
seeking to behold the things themselves, which can be seen only with
the eye of the mind?

Hence mathematics would deal first of all with abstract concepts such
as point, line, and whole number, Qther concepts such as triangle,
square, and circle could then be defined in terms of the basic ones,
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which as Aristotle pointed out must be undefined or els.e there wo-uld
be no starting point. The acuity of the Greeks is evident in the require-
ment that defined concepts must be shown to have counterparts in real-
ity, either by demonstration or construction, Thus one could not define
an angle trisector and prove theorems about it. It might not exist. A‘And
in fact, since the Greeks did. not succeed in constructing an angle trisec-
tor under the Hmitations they imposed on constructions, they did not
introduce this concept. ]
To reason about the concepts of mathematics the Greeks started with
axioms, truths so self-evident that no one could doubt them. Surely
such truths were available. Plato justified acceptance of the axioms by
his theory of recollection or anamnesis. There was for hirq, as we noted
earlier, an objective world of truths. Humans had experience as sounls
in another world before coming to earth and the soul had but to be
stimulated to rtecall its prior experience in order to know that the
axioms of geometry were truths. No experience on earth Was necessary.
Aristotle put it otherwise. The axioms are intelligible p}tmaples Which
appeal to the mind beyond possibility of doubt. The ax%oms,.Arls.tot!e
said in Posterior Analytics, are known to be irue by our infallible intu-
ition. Moreover, we must have these truths on which to base our rea-
soning. If, instead, reasoning were to use some facts not knpown to be
truths, further reasoning would be needed to establish these facts and
this process would have to be repeated endlessly. There would then be
an infinite regress. Among the axioms, he distinguished common no-
tions and postulates. Common notions are true in all ﬁelds‘of thought
and include statements such as “Equals added to equals give equals.”
Postulates apply to a specific subject such as geometry. Thus, “Two
points determine a unique line.” Aristotle did say that postulates need
not be self-evident but when not must be supported by the conse-
quences which follow from them, However, self.-evidency was required
by the mathematicians, ‘
From the axioms, conclusions were to be derived by reasoning.
There are many types of reasoning, for example, induction, reasoning
by analogy, and deduction. Of the many types, only one guarantees the
correctness of the conclusion. The conclusion that all apples are red
because one thousand apples are found to be red is inductive and
therefore not absolutely reliable. Likewise the argument that John
should be able to graduate from college because his brother who. n-
herited the same faculties did so, is reasoning by analogy and certainly
not reliable. Deductive reasoning, on the other hand, though it can
take many forms does guarantee the conclusion. Thus, if one grants
that all men are mortal and Socrates is a man, one must accept that
Socrates is mortal. The principle of logic involved here is one form of
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what Aristotle called syllogistic reasoning. Among other laws of deduc-
tive reasoning, Aristotle included the law of contradiction {a proposi-
tion cannot be both true and false) and the law of excluded middle (a
proposition must be either true or false).

He and the world at large accepted unquestioningly that these de-
ductive principles when applied to any premise yielded conclusions as
reliable as the premise. Hence if the premises were truths, so would the
conclusions be. It is worthy of note, especially in the light of what we
shall be discussing later, that Aristotle abstracted the principles of de-
ductive logic from the reasoning already practiced by mathematicians.
Deductive logic is, in effect, the child of mathematics.

Though deductive reasoning was advocated by almost all the Greek
philosophers as the only reliable method of obtaining truths, Plato’s
view was somewhat different. Though he would not object to deductive
proof, he did regard it as superfluous, for the axioms and theorems of
mathematics exist in some objective world independent of man, and in
accordance with Plato’s doctrine of anamnesis, man has but to recall
them to recognize their indubitable truth. The theorems, to use Plato’s
own analogy in his Theaetetus, are like birds in an aviary. They exist and
one has only to reach in to grasp them. Learning is but a process of rec-
ollection. In Plato’s dialogue Meno, Socrates by skillful questioning
elicits from a young slave the assertion that the square erected on the
diagonal of an isosceles right triangle has twice the area of a square
erected on a side. Socrates then triumphantly concludes that the slave,
since he was not educated in geometry, recalled it under the proper
suggestions.

It is important o appreciate how radical the insistence on deductive proof
was, Suppose a scientist should measure the sim of the angles of a
hundred different triangles in different locations and of different size
and shape and find that sum to be 180° to within the limits of experi-
mental accuracy. Surely he would conclude that the sum of the angles
of any triangle is 180°. But his proof would be inductive, not deductive,
and would therefore not be mathematically acceptable. Likewise, one
can tesi as many even numbers as he pleases and find that each is a sum
of two prime numbers. But this test is not a deductive proof and so the
result is not a theorem of mathematics. Deductive proof is, then, a very
stringent requirement. Nevertheless, the Greek mathematicians, who
were in the main philosophers, insisted on the exclusive use of deduc-
tive reasoning because this yields truths, eternal verities.

There is another reason that philosophers favor deductive reasoning.
Philosophers are concerned with broad knowledge about man and the
physical world. Lo _establish universal truths such as that man is basi-
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than nductior

5till another reason for [he classical Greeks' preference for deduction
may be found in the orgariization of their sodety. Philosophical, mathe-
matical, and artistic activities were carried on by the wealthier class.
These people did no manual-work. Slaves, metics {non-citizens), and
free citizen-artisans were employed in business and in the household,
and they even practiced the most important professions.. Educated
freemen did not use their hands and rarely engaged in commercial
pursuits. Plato declared that the trade of a shopkesper was a degrada-
tion to a freeman and wished that his engagement in such a trade be
punished as a crime. Aristotle said that in the perfect state no citizen {as
opposed t¢ slaves) would practice any mechanical art. Among the
Boeotians, one of the Greek tribes, those who defiled themselves with
commerce were excluded from all state offices for ten years. To
thinkers in such a society, experimentation and chservation would be
alien. Hence no resuits scientific or mathematical would be derived
from such sources.

Though there are many reasons for the Greeks’ insistence on dedue-
tive proof there is some question as to which philosopher or group of
philosophers first laid down this requirement. Unfortunately our
knowledge of the teachings and writings of the pre-Socratic philoso-
phers is fragmentary and though various answers have been given
there is no universally accepted one. By Aristotle’s time the require-
ment was certainly in effect, for he is explicit about standards of rigor
such as the need for undefined terms and the laws of reasoning.

How successful were the Greeks in executing their plan of obtaining:
mathematical laws of the universe? The cream of the mathematics

created by such men as Euclid, Apollonius, Archimedes, and Claudius
Prolemy has fortunately come down to us. Chronologically these men
belonged to the second great period of Greek culture, the Hellenistic
or Alexandrian (300 B.c.—a.p. 600). During the 4th century B.c. King
Philip of Macedonia undertook to conquer the Persians, who controiled
the Near East and had been traditional enemies of the European
Greeks. Philip was assassinated and was succeeded by his son Alexan-
der. Alexander did defeat the Persians and moved the cultural center
of the enlarged Greek empire to a new city which he modestly named
after himself. Alexander died in 323 b.c., but his plan to develop the
new center was continued by his successors in Egypt who adopted the
royal title of Prolemy.

It is quite certain that Fuclid lived in Alexandria about 300 B.c. and
trained students there, though' his own education was probably ac-
quired in Plato’s Academy. This information, incidentally, is about all
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we have on Euclid's persona!l life. Euclid’s work has the form of a sys-
ternatic, deductive, and vast account of the separate discoveries of
many classical Greeks. His chief work, the Flements, offers the laws of
space and figures in space.

Euclid’s Elements was by no means all of his contribution to the geom-
etry of space. Euclid took up the theme of conic sections in a book no
longer extant, and Apollentus {262-190 B.c.), a native of Pergamum in
Asta Minor who learned mathematics in Alexandria, carried on this
study of the parabola, ellipse, and hyperbola and wrote the classic work
on the subject, the Conic Sections.

To this purely geometrical knowledge Archimedes (287-212 r.c.),
who was educaied in Alexandria but lived in Sicily, added several

-works, On the Sphere and Cylinder, On Conoids and Sphevoids, and The

Quadrature of the Parabola, all of which deal with the calculation of
complex areas and volumes by a method introduced by Eudoxus
(380-337 ».c.) and later known as the method of exhaustion. Nowadays
these problems are solved by the methods of the calculus.

The Greeks made one more major addition to  the study of space and
figures in space—trigonomeiry. The originator of this work was Hip-
parchus, who lived in Rhodes and in Alexandria and died about 125
B.¢. It was extended by Menelaus (. A.p. 98) and given a complete and
authovitative version by the Egyptian Clandius Piolemy (d. a.p. 168),
who worked in Alexandria. His major work was Mathematical Composi-
fiort, known more popularly by the Arabic title, Almagest. Trigonometry
concerns the quantitative relationships among the sides and angles of a
triangie. The Greeks were concerned mainly with triangles on the sur-
face of a sphere, the sides of which are formed by arcs of great circles
(circles with centers at the center of the sphere) because the major
application was to the motion of planets and stars, which in Greek as-
tronomy moved along great circles. However, the same theory, when
translated, readily applies to triangles in a plane, the form in which
trigonometry is approached in our schools today. The introduction of
trigonometry required of its users rather advanced arithmetic and
some algebra. Just how the Greeks operated in these areas will be a
later concern (Chapter V).

With these several creations mathematics emerged from obscure, em-
pirical, disconnected fragments to brilliant, huge, systematic, and deep
intellectual creations. However, the classics of Fuclid, Apollonius, and
Archimedes—Ptolemy’s Almagest is an exception—that deal with the
properties of space and of figures in space seem to be limited in scope
and give little indication of the broader significance of their material.
These works seem to have little relation to revealing truths about the
workings of nature. In fact, these classics give only the formal, polished
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deductive mathematics. In this respect Greek mat.hengg;iml.i@xm.armo
different from modern fathematical textbooks and ireatises. Such

attaine d amd« SO Omit thc mativations for 1he m«zthcmatsas

Ind{h(‘ﬂldi!( al knowied;,t' is put. Hence many writers on classical Greek
mathematlcs assert that the mathematicians of the period were con-
cerned only with mathematics for its own sake and they arrive at _and
detend this assertion by pointing to Euclid’s Elements and Apollonius’s
Conic Sections, the two greatest compilations of work in that period.
However, these writers have narrowed their focus. To look oaly at the
Efements and the Conic Sections s like loeking at Newton's paper on the
binomiat theorem and concluding that Newton was a pure mathema-
tician.

The real goal was the study of nature. Insofar as the study of the
physical world was concerned, even the truths of geometry were highly
sigriificant, It was clear to the Greeks that geometric principles were
embodied in the entire structure of the universe, of which space was
the primary component. Hence the study of space and figures in space
was an essential contribution io the investigation of nature. Geometry
was in fact part of the larger study of cosmology. For example, the
study of the geometry of the sphere was undertaken when astronomy
became mathematical, which happened in Plato’s time. In fact, the
Greek word for sphere meant astronomy for the Pythagoreans. And
Euclids's Phasnomena, which was on the geometry of the sphere, was
specifically intended for use in astronomy. With such evidence and with
the fuiler knowledge of how developments in mathematics took place
in more recent times, we may be certain that the scientific investigations
must have suggested mathematical pmbiemb and that the mathematics
was part and parcel of the mvesugduon of nature. But we need not
speculate. We have only to examine what the Greeks accomplished in
the study of nature and who were the men inveolved.

The greatest success in the field of physical science proper was
achieved in astronomy. Plato, though fully aware of the impressive
number of astronomical observations made by the Babylonians and
Egyptians, emphasized that they had no underlying or unifying theory
and no explanation of the seemingly irregular motions of the planets.
Eudoxus, who was a student at the Academy and whose purely geomet-
rical work is incorporated in Books V and X1 of Euclid's Elements, took
up the problem of “saving the appearances.” His answer is the first
reasonably complete astronomical theory known to history.

We shall not describe Eudoxus’s theory except to state that it was
thoroughly mathematical and involved the motions of interacting
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Figure 1.5

spheres. These spheres were, except for the “sphere” of fixed stars, nat
material bodies but mathematical consiructions. Nor did he 1y 10 ac-
count -for forces which would make the spheves votate as he said they
did. His theory is thoroughly modern in »pi]it for today mathematical
description and not physical explanation is the goal in science. This
theory was supetseded by the theory credited 1o the three greatest the-
oretical astronomers after Eudoxus namely, Apollonius, Hipparchus
and Ptolemy and incorporated in Piolemy’s Afmagest.

Apollonius left no extant work in astrongmy. However, his contribu-
tions are cited by Greek writers including Prolemy in his dbmagest (Book
XI. He was so famous as an astronomer that he was nicknamed £
(epsilon) because he had done much work on the motion of the moon
and £ was the symbol for the moon. Only one minor work of Hip-
parchius is known but he, too, 1s cited and credited in the Almagest.

The bhasic scheme of what is now referred to as Prolemaic astronomy
had entered Greek astronomy between the times of Eudoxus and Apol-
lonius. In this scheme a planet 2 moves at a constant speed on a circle
(Fig. 1.5) with center § while § itsell moves with constamt speed on a
circle with center at the earth E. The circle on which $ moves is called
the deferent while the circle on which P moves is called an epicycle.
The point § in the cases of some planets was the sun but in other cases
it was just a mathematical point. The direction of the motion of P could
agree with or be opposite to the direction of motion of 5. The latter
was the case for the sun and moon. Prelemy also used a variation on
this scheme to describe the motion of some of the planets. By prop-
erly selecting the radii of the epicycle and deferent, the speed of a body
on its epicycle, and the speed of the cenier of the epicycle on the
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deferent, Hipparchus and Pwolemy were able to get descriptions of the
motions which were quite in accord with the observations of their
times. From the time of Hipparchus an eclipse of the moon could be
predicted to within an hour or two, though eclipses of the sun were
predicted somewhat less accurately. These predictions were possible
because Prolemy used trigonometry, which he said he created for as-
tronomy. A

From the standpoint of the search for truths, it is noteworthy that
Piolemy, like Eudoxus, fully realized that his theory was just a conven-
ient mathematical description which fit the observations and was not
necessarily the true design of nature. For some planets he had a choice
of aliernative schemes and he chose the mathematically simpler one.
Prolemy says in Book X111 of his Abnagest that in astronomy one ought
to seek as simple a mathematical model as possible. But Prolemy’s
mathematical model was received as the truth by the Christian world.

Prolemaic theory offered the first reasonably complete evidence of
the uniformity and invariability of nature and is the final Greek answer
to Plato's problem of rationalizing the apparent motions of the heav-
enly bodies. No other product of the entire Greek era rivals the Al-
magest for its profound influence on conceptions of the universe and
none, except Euclid’s Elements, achieved such unquestioned authority.

This brief account of Greek astronomy does not of course cover
many other contributions tothe subject nor does it reveal the depth
and extent of the work even of the men treated. Greek astronomy was
masterful and comprehensive and it employed a vast amount of mathe-
matics. Moreover, almost every Greck mathematician devoted himself
to the subject, including the masters Euclid and Archimedes.

The attainment of physical truths did not end with the mathematics
of space and astronomy. The Greeks founded the science of mechanics.
Mechanics deals with the motion of objects that may be considered as
particles, the motion of extended bodies, and the forces that cause
these motions. In his Physics Aristotle put together a theory of motion
which is the high point of Greek mechanics. Like all of his physics, his
mechanics is based on rational, seemingly self-evident principles, en-
tirely in accord with observation. Though this theory held sway for al-
most two thousand years, we shall not review it because it was super-
seded by Newtonian mechanics. Notable additions to Aristotle’s theory
of motion were Archimedes’ works on centers of gravity of bodies and
his theory of the lever. What is relevant in all of this work is that math-
ematics played a leading role and thereby added to the conviction that
mathematics. was fundamental in penetrating the design of nature.

Next to astronomy and mechanics optics has heen the subject most
constantly pursued. This mathematical science, too, was founded by the
Greeks. Almost all of the Greek philosophers, beginning with the Py-
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thagoreans, speculated on the nature of light, vision, and color. Our con-
cern, however, is with mathematical accomplishments in these areas.
The first was the assertion on a priori grounds by Empedocies of
Agrigentum (¢, 490 B.c.)—Agrigentum was in Sicily—thart light tavels
with finite vefocity. The first systematic treatments of lght that we have
are Euclid's Optics and Cateptrica.* The Optics is concerned with the
problem of vision and with the use of vision to detormine sizes of ob-
Jects. The Catoptrica (theory of mirrors) shows how light ravs behave
when reftected from plane, concave, and convex mirrors and the effect
of this behavior on what we see. Like the Optics it starts with definitions
which are really postulates. Theorem 1 (an axiom in modern texts) is
fundamental in geometrical optics and is known as the law of reflec-
tion. It says that the angle 4 that a ray incident from point # makes
with a mirror (Fig. 1.6) equals the angle B which the reflected ray
makes with the mirror. Euclid also proves the law for a ray striking a
convex or a concave mirror (Fig. 1.7). At the point of contact he substi-
tutes the tangent & for the mirror. Both books are thoroughly mathe-
matical not only in content but in organization. Definitions, axioms and
theorems dominate as in Euclid’s Elements,

From the faw of reflection, the mathematician and engineer Heron
{(Ist century a.n.) drew an important consequence. If P and @ in Fig-
ure 1.6 are any two poinis on one side of the line ST, then of all the
paths one could follow in going from point P te the line and then to
point @, the shortest path is by way of the point B such that the two line
segments PR and QR make equal angles with the line. And this is ex-
actly the path a light ray takes. Hence, the light ray takes the shortest
path in going from P to the mirror to Q. Apparently nature is well
acquainted with geometry and employs it to full advantage. This prop-
osition appears in Heron's Catoptrice which also treats concave and con-
vex mirrors and combinations of mirrors.

P 7] '
AN B Mirror /
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Figure 1.6 Figure 1.7

*The version we have today is probably a compilation of several works including Eu-
chicl’s.
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Any number of works were writien on the reflection of light by mir-
rors of various shapes. Among these are the now lost works, Archime-
des” Catoptrica and Apollonius's On the Burning Mirrer (¢.190 8., gnd
the extant work of Diocles, (On Burning-Mirrors (£.190 B.C.). Burning
mirrors were concave mirrors in the form of portions of a spherﬁe,
parabeloids of revolution (formed by revolving a paz‘abol-a ab(,mt is
axis), and ellipsoids of revolution. Apollonius knew anq Diocles b(?()k
contains the proof that a paraboloidal mirror will reflect light emanating
from the focus into a beam.parallel to the axis of the mirror (F;g. 1.8).
Conversely, rays coming in parallel to the axis will after reflection be
concentrated at the focus, The sun’s rays thus concentrated prqduce
great heat at the focus and hence the term burnipg mirrgn This 15 the
property of the paraboloidal mirror which Archimedes 15 repor_ted. to
have used to concentrate the sun's rays on the Roman ships besieging
his home city Syracuse and to set them afire, Apollonius also knew the
reflection properties of the other conic sections, suci} as that all rays
emanating from one focus of an ellipsoidal mirror will be relﬂecte.d o
the other focus. He gives the relevant geometrical properties of the
ellipse and hyperbola in Book 11 of his Conic Sections.

The Greeks founded many other sciences, notably geography and
hydrostatics, Eratosthenes of Cyrene (¢.284-¢. 1‘92 8.(}.), one of the
most learned men of antiquity and director of the hbrary'at.Alex-
andria, made numerous calculations of distances between significant
places on the portion of our earth known to the Greekls. He aiso made.
a now famous and quite accurate calculation of the clrcumfe:rf?nce q{
the earth and wrote his Geography, in which beyond describing his
mathematical methods he also gave his explanation of causes for the
changes which had taken place on the earth’s surface. .

The most extensive work on geography was Prolemy’s Geography, in
eight books. Ptolemy not only extended Eratosthenes’ work but Eot}&ted
eight thousand places on the earth in terms of the very same lamgde
and longitude we now use. Prolemy also gave methods of mapmaking,

Figure 1.8
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some of which are still used, particularly the method of gtereographic
projection. In all of this work in geography the geometry of figures on
a sphere, applied from the 4th century B.c. onward, was basic.

As for hydrostatics, the subject which deals with the pressure on bod-
ies which are placed in water, Archimedes” book On Floating Bodies is
the foundational work. Like all of the works we have been describing it
is thoroughly mathermatical in approach and derivation of results. In
particular it contains what is now known as Archimedes’ principle, that
a body immersed in water is buoyed up by a force equal 1o the'weight
of the water displaced. Thus we owe to Archimedes the explanation of
how man can remain afioat in a world of forces that tend to submerge
him.

Though the deductive approach to mathematics and the mathemat-
ical representation of the laws of nature dominated the Alexandrian
Greek period, we should note that the Alexandrians, unlike the clas-
sical Greeks, also resorted to experimentation and observation. The
Alexandrians took over and utilized the remarkably accurate astronom-
ical observations which the Babylonians had made over a period of two
thousand years. Hipparchus made a catalogue of the stars observable in
his time. Inventions (notably by Archimedes and the mathematician

and engineer Heron) included sun-dials, astrolabes, and uses for steam -

and water power.

Particularly famous was the Alexandrian Museum, which was started
by Prolemy Soter, the immediate successor of Alexander in Egypt. The
Museum was a home for scholars and included a famous library of
about 400,000 volumes, Since it could not house all the manuscripts an
additional 300,000 were housed in the Temple of Serapis. The scholars
also gave Instruction to students.

With their mathematical work and many scientific investigations, the
Greeks gave substantial evidence that the universe is mathematically
designed. Mathematics is immanent in pature; it is the truth about na-

. ture’s structure, ot, as Plato would have it,.th v.about the physical

wortd. THete 1513w and order in the universe and mathematics is the
key to this order. Morecver, human reason can penetrate the pian and
reveal the mathematical structure,

The impetus for the conception of a logical, mathematical approach
to nature must be credited primarily to Euclid’s Elements. Though this
work was intended to be a study of physical space, its organization, in-
genuity, and clarity inspired the axiomatic-deductive approach not only
to other areas of mathematics such as the theory of numbers but to all
of the sciences. Through this work the notion of a logical organization
of all physical knowledge based on mathematics entered the intellectual
world.
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Thus the Greeks founded the alliance between mathematics and the
study of nature’s design which has since become the very basis of mod-
ern science. Uniif the latter part of the 19th century, the search for
.mathematical design was the search for truth. The belief that mathe-
matical laws were the truth about nature atracted the deepest and
noblest thinkers to mathematics.

@ﬁ?ﬁ €3 e Pl #F5,

& M&g;my«ajh%;f g F g ;d:'iwﬁy.}c o
Cur g eai s, kszgy fm Com, by im
EI %ﬂ & &W& ; f’::'._, Eetes 5 v

The Flowering of Mathematical Truths

The chief aim of ali investigations of the external world
should be te discover the rational order and harmony
which has been imposed on it by God and which He re-
vealed to us in the language of mathematics.

JOUHANNES KEPLER

The majestic Greek civilization was destroyed by several forces. The
first was the gradual conquest by the Romans of Greece, Egypt, and the
Near East. The Roman objective in extending its political power was
not 1o spread its materialistic culture. The subjugated areas became col-
onies from which great wealth was exiracted by expropriation and by
taxation.

The rise of Christianity was anocther blow to pagan Greek culture.
Theugh Christian leaders- adopted many Greek and Oriental myths
and customs with the intent of making Christianity more acceptable to

-converts, they opposed pagan learning and even ridiculed mathemat-

ics, astronomy, and physical science. Despite cruel persecution by the
Romans, Christianity spread and became so powerful that the Roman
emperor Constantine the Great in his £dict of Milan of a.p. 313 recog-
nized Christianity as the official religion of the Empire. Later, Theodo-
sius (ruled a.n. 379-396) proscribed the pagan religions and in 392 or-
dered that their temples be destroyed.

Thousands of Greek books were burned by.the Romans and the
Christians. In 47 ».c., the Romans set fire to the Egyptian ships in the
harbor of Alexandia; the fire spread and burned the library—the most
extensive of ancient libraries. In the year that Theodosius banned the
pagan religions, the Christians destroyed the temple of Serapis in Alex-
andria, which housed the only remaining sizable collection of Greek
works. Many other works written on parchment were expunged by the
Christians so that they could use the parchment for their own writings.

The late history of the Roman Empire is also relevant. The Emperor

31
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Theodosius divided the extensive empire between his two sons, Hon-
orius, who was to tule Italy and western Europe, and Arcadius, who
was to rule Greece, Egypt, and the Near East. The western part was
conqguered by the Gothis in the 5th century a.p. and its subsequent his-
tory belongs to the history of medieval Europe. The eastern part pre-
served its independence. Sinee the Eastern Roman Empire, known akso
as the Byzantine Empire, included Greece proper and Egypt, Greek
culture and Greek works were to some extent preserved.

The final blow to the Greek civilization was the conquest of Egypt by
the upsurging Moslems in a.p. 640. The remaining books were de-
stroyed on the ground that, as Omar, the Arab congueror, put it, “El-
ther the books contain what is in the Koran, in which case we don't
have to read them, or they contain the opposite, of what is in.the Koran,
m which case we must not read them.” And so for six months the baths
of Alexandria were heated by burning rolls of parchment.

After the capture of Egypt by the Mchammedans the majority of
scholars migrated to Constantinople, which had becore the capital of
the Eastern: Roman Empire. Though no activity along the lines of
Greek thought could flourish in the unfriendly Christian atmosphere
of Byzantium, this inflow of scholars and their works to comparative
safety increased the treasury of knowledge that was to reach Europe
800 years later.

India and Arabia contributed to the continuity of mathematical activ-
ity and introduced some ideas that were to play a larger role fater®
During the years from a.p. 200 to about 1200 the Hindus, influenced
somewhat by the Greek works, made some original contributions o
arithmetic and algebra. The Arabs, whose empire at its height ex-
tended over all the lands bordering the Mediterranean and into the
Near East and embraced many races united by Mohammedanism, ab-
sorbed the Greek and Hindu contributions and also made some ad-
vances of their own. These, in the spirit of the Alexandrian Greeks,
commingled deductive reasoning and experimentation. 'The Arabs con-
tributed 1o algebra, geography, astronomy, and optics. They also built
colleges and schools for the transmission of knowledge. It is to the
credit of the Arabs that though they were firm adherents of their own

religion, they did not allow religious doctrines to restrict their mathe- -

matical and scientific investigations.

Despite the fact that both the Hindus and the Arabs were able to
profit from the magnificent foundations erected by the Greeks and
though they furthered Greek mathematics and science, they were not
possessed as were the Greeks to understand the structure of the uni-

*We shall say more about the work of the Hindus and Arabs in Chapter V.
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verse. The Arabs translated and commented extensively and even cri-
tically on Greek works but nothing of great moment or magnitude was
added to the truths already known. By a.p. 1500 their empire was de-
stroyed by the Christians in the West and by internal strife in the East.
While the Arabs were building and expanding their civilization, an-
other civilization was being founded in Western Europe. & high level
of culture in this region was attained in the medieval period, which ex-
tended from about A.p. 500 1o 1500. This culture was dominated by the
Catholic Church, and its teachings, however deep and meritoricus, did
not favor the study of the physical world. The %ﬂm(’ﬂd ruled the
universe and man’s role was to serve and please Him and by so doing
win salvation, whereupon the soul would live in an after-life of | joy and -
splendor. The conditions of life on this earth were immaterial and
hardship and suffering were not only to be tolerated but were in fact to
be undergone as a test of man's faith in God. Understandably, interest
in mathematics and science which had been motivated in Greek times
by the study of the physical world was at a2 nadir. The intellectuals of
medieval Furope were devoted seekers of rruths but these-they-seusht

in revelavon and in the study of the Scripimres. Hence medieval

Thinkers did not adduce additional evidence for the mathematical de-

sign of nature, However, late medieval philosophy did suppert the
belief in the regularity and uniformity of nature's behavior, though this
was thought to be subject to the will of God.

Late medieval Europe was shaken and altered by a nirmber of revolu-
tionary influences. Among the many which converted the medieval civi-
lization into the modern, the most important for our present concern
was the acquisition and study of Greek works. These became known
through the Arabic translations and through Greek works which had
been kept intact in the Byzantine Empire. In fact, when the Turks
conquered this empire in 1453 many Greek scholars fled westward with
their books. It was from Greek works that the leaders of the intellectual
revitalization of Europe learned nature is mathematically. designed and
this design s harmonious, aestheétically pleasing, and the inner truth
about nature. Nature not only is rational and orderly but acts in accor-
dance with inexorable and immutable laws. European scientists began
their study of nature as the children of ancient Greece.

That the revival of Greek ideals induced some to take up the study of
nature is indubitable. But the speed and intensity of the revival of
mathematics and science were due 1o many other factors. The forces
which overthrew one culture and fostered the development of a new
one are numerous and complicated. The rise of science has been stud-
jed by many scholars and much history has been devoted to pinpeini-
ing the causes. We shall not attempt here to do more than name them.




34 MATHEMATICS! THE LOSS OF CERTAINTY

The rise of a ciass of free artisans, and a consequent interest in mate-
rials, skills, and technology, generated scientific problems. Geographical
explorations, motivated by the search for raw materials and gold, in-
troduced knowledge of strange lands and customs which challenged
medieval Furopean culture.. The Protestant revolution rejected some
Catholic docirines, thereby fostering controversy and even scepticism
concerning both religions. The Puritan emphasis on wark and utility of
i;mw!ﬁ(_iggg_u%he introduction of gunpowder, which raised new
military problems such as the motion of projeciles, and the problems
raised by rhe navigations over thousands of miles of sea out of sight of
land all motivated the study of nature. The invention of printing per-
mitted the spread of knowledge which the Church had been able o
centrol. Though authorities differ on the degree to which one or more
of these forces may have infiuenced the investigation of nature, it suf-
fices for our purposes to note their multitude and the universally ac-
cepted fact that the pursuit of science did become the dominant feature
of modern European civilization,

The Europeans generally did not respond immediately to the new
forces and influences. During the period aften labelied humanistic the
study and absorption of Greek works were far more characteristic than
active pursuit of the Greek objectives, But by about a.p. 1500 miads in-
fused with Greek goals—the application of reason to the study of na-
ture and the search for the underlying mathematical design—began to
act. However, they faced a serious problem. The Greek goals were in
conflict with the prevailing culture. Whereas the Greeks believed in the

_mathematical design of nature, nature conforming invariahly and unal-

terably to some ideal plan, late medieval thinkers ascribed all plan apd
action to the Christian God. He was the designer and creator, and all

rhe actions of nature followed the - plan laid down by this agency.lhe

}mherse was the handiwork of God and subiject to Hiswill The mathe-

mancans dud scientlsts of the Renaissance and several succeeding cen-

wiries were orthodox Chrisitans and so accepted this. doctrine, But
Catholic t teachings by no means included the Greek doctrine of the
mathematical design of nature. How then was the atterpt to understand
God’s universe to be reconciled with the search for the mathematical
laws of nature? The answer was 1o add a new doctrine, that the Chris-
tian God had designed the universe mathematically. Thus the Catholic
dQ(;ﬂl!}i? postularing the supreme importance of seeking to understand
God’s will and Fis creations took the form of a search for God's mathe-
matical design of nature. Indeed the work of 16th., [7th-, and most
I8th-century mathematicians was, as we shall soon see more clearly, a
refigious quest. The search for the mathematical laws of nature was an

act of devetion which would reveal the glory and grandeur of His
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handiwork. Mathematical knowledge, the truth about God’s design of
the universe, was as sacrosanct as any line of Seripture. Man could not
hope to perceive the divine plan as clearly as God Himself understood
it, but man could with humility and modesty seek at least to approach
the mind of God and so understand God's world,

One can go further and assert that these mathematicians were sure
of the existence of mathematical laws underlying natural phenomena
and persisted in the search for them because they were convinced a
priori that God had incorporated them into the construction of the uni-
br llilance rather thg,g_thﬁ.mxesngalamai he beliefs and attitudes oi “the
mathematicians and scientists exemplify the larger cuitural phenome-
non that swept Renaissance Europe. The recently rediscovered Greek
works confronted a deeply devout Christian world, and the intellectual
leaders born in one and attracted to the other fused the doctrines of
both,

Perhaps the most impressive evidence that the Greek doctrine of the
mathematical design of nature coupled with the Renaissance beliet in
God’s authorship of that design had taken hold in Europe 1s furnished
by the work of Nicolaus Copernicus and Johannes Kepler. Up to the
16th century, the only sound and useful astronoimical theory was the
geocentric system of Hipparchus and Ptolemy. This was the theory ac-
cepted by professional astronomers and applied to calendar-reckoning
and navigation. Work on a new astronomical theory was begun by
Copernicus (1473-1543). At the University of Bologna, which he en-
tered in 1497, he studied astronomy. In 1512 he assumed his duties as
canon of the Gathedral of Frauenberg in East Prussia. This work left
Copernicus with plenty of time to make astronomical observations and
to think about the relevant theory. After vears of reflection and obser-
vation, Copernicus evolved a new theory of planetary motions which he
incorporated in a classic work, On the Revolutions of the Heavenly Spheres.
He had written his first version in 1507 but feared to publish it because
it would antagonize the Church. The -book appeared in 1543, the year
in which he died.

When Copernicus began to think about astronomy, the Ptolemaic
theory had become somewhat more complicated. More epicycles had
been added to those introduced by Ptolemy in order to make the
theory fit the increased amount of observational data gathered largely
by the Arabs. In Copernicus’s time the theory required a total of
seventy-seven circles to ‘describe the motion of the sun, moon, and the
five planets known then. To many astronomers the theory, as Coper-
nicus says in his Preface, was scandalously complex.

Copernicus had studied the Greek works and had become convinced
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that the universe was mathematically and harmoniously designed. Har-
mony demanded a more pleasing theory than the complicated exten-
sion of Plolemaic theory, He had read that some Greek authors, nota-
bly Arnstarchus (3rd century 8.¢.), had suggested the possibility that the
sun was stationary and that the earth revolved abowt the sun and ro-
tated on its axis at the same time. He decided to explore this possibility.

The upshot of his ressoning was that he used the Prolemaic scheme
of deferent and epicycle (Chapter 1) 1w describe the motons of the
heavenly bodies, with, however, the all-important difference that the
sun was at the center of each deferent. The earth iself became a planet
moving on an epicycle while rotating on its axas. Theveby he achieved
considerable simplification. He was able 10 reduce the total number of
vircles (deferents and epicycles) to thirty-four insicad of the seventy-
seven required in the geocentric theory.

The more remarkable simplificaton was achieved by Johannes
Kepler (1571-1630}, one of the most intriguing figures in the history of
science. In a life beset by many perscnal mistfortunes and hardships oc-
casioned by religious and political events, Kepler had the good fortune
m 1600 to become an assisiant o the famous astronomer Tycho Brahe.
Brahe was then engaged In making extensive new observations, the
first major undertaking since Greek times. These observations and
others which Kepler made himself were invaluable to him. When
Brahe died in 1601 Kepler succeeded him as Imperial Mathematician
to Emperor Rudolph 11 of Austria.

Kepler's sclentific reasoning is fascinating, 1 Jke Copernicus he was a
xustm and like Copernicus he believed that the world was designed by

God in accordance with some simple and beautiful mathematical plan.
He said in his Mystery of the Cosmos (1596), the mathematical harmonies
in the mind of the Creator furnish the cause "why the number, the size,
and the motion of the orbs are as they are and not otherwise.” This
belief dominated all his thinking. But Kepler also had qualities which
we now associate with scientists. He could be coldly rational. Though
his fertile imagination triggered the conception of new theoretical sys-
tems, he knew that theories must fit ohservations and, in his later years,
saw even more clearly that empirical data may indeed suggest fun-
damental principles of science. He therefore sacrificed even his most
beloved rnathematical hypotheses when he saw that they did not fit ob-
servational data, and it was precisely this incredible persistence in re-
fusing 10 tolerate discrepancies any other scienust of his day would
have disregarded that led him 1o espouse radical scientific ideas. He

also had the humility, paticnce, and energy that enable great men to

pertorm exiraordinary labor.

Kepler's search for the mathematical laws of nature, which his beliefs
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assured him existed, led him to spend years in following up {alse trails,
In the Preface to his Mystery of the Cosmos, we find him saying: “T under-
take to prove that God, in chatmg the universe and regulating the
order of the cosmos, had in view the five regular bodies of geometry as
known since the days of Pythagoras and Plato, and that he has fixed ac-
cording to those dimensions the number of heavens, their proportions,
and the relations of their movements.” However, the deductions from
his attempt to build a theory based on the five regular polyhedra were
not in accord with observations, and he abandoned this approach only
after he had made extraordinary efforts to apply it in modified form.

But he was eminently successful in later efforts to find harmonious
mathematical relations. His most famous and important results are
known today as Kepler’s three laws of planetary motion. The first two
were published in a book of 1609 bearing a long title and often re-
ferred to by the first part, The New Astronomy, or by the last part, Com-
mentaries on the Motion of the Planet Mars. The first of these laws is
especially remarkable, for Kepler broke with the tradition of two thou-
sand years that circles or spheres must be used o describe heavenly
motions, Instead of resorting to deferent and several epicycles, which
both Ptolemy and Copernicus had used to describe the motion of any
one planet, Kepler found that a single ellipse would do. His first law
states that each planet moves on an ellipse and that the sun is at one
(common) focus of each of these elliptical paths (Fig. 2.1). The other
focus of each ellipse is merely 2 mathematical point at which nothing
exists. ‘This law is of immense value in comprehending readily the
paths of the planets. Gf course Kepler, like Copernicus, added that the
earth also rotates on its axis as it travels along its eiliptical path.

But astronomy had 1o go much further if it was to be useful. It must
tell us how to predict the positions of the planets. If one finds by obser-
vation that a planet is at a particular position, P, say, in Figure 2.1, he
might like to know when it will be at some other position such as a sol-
stice or an equinox, for example. What is needed is the velocity with
which the planets move along their respective paths.

Here, too, Kepler made a radical step. Copernicus and the Greeks

Figure 2.1. Each planet moves in an ellipse about the sun.
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Figure 2.2, Kepler's law of equal areas. KN

)

had always used constant velocities. A planet moved along its epicycle
30 as to cover equal arcs in equal times, and the center of each epicy-
cle also moved at a constant velscity on another epicycle or on a de-
ferent. But Kepler's observations told him that a planet moving on its
ellipse does not move at a constant speed. A hard and long search for
the correct law of velocity ended successfully. What he discovered was
that if a planet moves from P to Q (Fig. 2.2) in, say, one month, then jt
will also move from P’ to (3’ in one month, provided that the area PSG
equals the area P'SQ'. Since P is nearer the sun than P’ is, the arc PQ
must be larger than the arc P'Q’ if the areas PSQ and P'5Q’ are equal.
Hence the planets do not move at a constant velocny In fact, they

move faster when closer to the sun.
Kepler was overjoyed to discover this second faw. Although it is not
so simple to apply as a law of constant velocity, it _nonetheless con-
gﬁrmed his fundamental belief that God had used mathem mml pringi-
ﬁa ples 1o design the_universe-Gaod had. ,
‘»u tle, buL, n@mﬁh@l@sswa«mame&n mrai ldW clearEy determmed how

Anolher m‘yor problem remained. What law described the distances
of the planets from the sun? The problem was now complicated by the
fact that a planer’s distance from the sun was not constant, Hence
Kepler searched for a new principle which would take this fact into ac-
count. He believed that nature was not only mathematically but harmo-
niously designed and he took this word “harmony” very literally. Thus
he believed that there was a music of the spheres, which produced a
harmonious tonal effect, not in actual sound but discernible by some
translation of the facts about planetary motions into musical notes. He
followed this lead and afier an amazing combination of mathematical
and musical arguments arrived at the law that, if T is the period of rev-
olution of any planet and I’ is its mean distance from the sun, then
T?=kD% where % is a constant which is the same for all the planets. This
is Kepler’s third law of planetary motion and the one he trizmphantiy
annotnced in his book The Harmony of the World (1619).

After stating his third law Kepler broke forth into a paean to God:
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‘Sun, moon, and planets glority Him in your ineffable fanguage! Celes-
tial harmonies, all ve who comprehend His marvelous works, pratse

Him. And thou, my soul, praise thy Creator! It is by Him and in Him

‘”t"hat all exists. 1hat w!uch we know best is comprised in Him, as well as

m our vain science.

“The strengih of Copernicus’s and Kepler's conviction that God must
have designed the world harmoniously and simply can be judged by
the objections with which they had to contend. That the other planets
were in motion even according to Prolemaic theory was explained by -
the Greek doctrine that these were made of special, hgh: matier and
therefore easily moved, but how could the heavy earth be put into mo-
tion? Neither Copernicus nor Kepler could answer this guestion. An
argument against the_earth’s rotation maintained rhat objects on the
surface would fly off into space just as an object on a rotating platform
wilt fly off. Neither man could rebut this argument. To the further ob-
jection that a rotating earth would itself fly apart, Copernicus replied
weakly that the earth’s motion was natural and could not destroy the
planet. Then he countered by asking why the sky did not fall apart
under the very rapid daily motion which the geocentric theory called
for. Yet ancther objection was that, if the earth rotated from west to
east, an object thrown up into the air would fall back to the west of its
original position, because the earth moved while the object was in the
air. If, moreover, the earth revolved about the sun, then, since the ve-
focity of an object is proportional to its weight, or so at least Greck and
Renaissance physics maintained, lighter objects on the earth should be
left behind. Even the air should be left behind, To the last argument
Copernicus replied that air is earthy and so moves in sympathy with the
earth, The substance of these objections is that a rotating and revolving
earth did not fit in with the theory of motion due to Aristotle and com-
monly accepted in Copernicus’s and Kepler's time.

Another class of scientific arguments against a helioceniric theory
came from astronomy proper. The most sericus one stemmed from the
fact that the heliocentric theory regarded the stars as fixed. However,
in six months the earth changes its position in space by about 186
million miles. Hence if one notes the direction of a particular star at
one time and again six months later, he should chserve a difference in
direction, But this difference was not observed in Copernicus’s or Kep-
ler's time. Copernicus argued that the stars are so far away that the dif-
ference in direction was too small 10 be observed. His explanation did
not satisfy his critics, who countered that, if the stars were that distant,
then they should not be clearly observable. in this instance, Coper-
nicus’s answer was correct. The change in direction over a six-month
period for the nearest star is an angle of 0.31"; and this was first de-
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tected in 1838 by the mathematician Friedrich Wilhelm Bessel, who by
that time had a good telescope at his disposal. ‘

The traditionalists asked further, why do we not feel any motion if

the earth is moving around the sun at about 18 miles per second and is
rotating at the equator at about 0.3 miles per second? Qur senses, in
fact, tell us that the sun is moving in the sky. To people of Kepler's
time, the argument that we do not feel ourselves moving at the very
high speeds called for by the new astronomy was incontrovertible. All
of these scientific objections to a moving earth were weighty and could
ot be dismissed as the stubborness of die-hards who refused to see the
truth.
Copernicus and Kepler were deeply religious and yet both Fienied
one of the prevailing doctrines of Christianity. This doctrine affirmed
that man was at the center of the universe; he was the chief concern of
MWBW, T contrast, by putting the sun at the
center of the universe, undermined this comforting dogma of the
Church. It caused man Lo appear to be one of a possible host of wan-
derers drifting through a cold sky. It seemed less likely that he was
born to live gloriously and to attain paradise upon his death. Less
likely, too, was it that he was the object of God’s ministrations. Coper-
nicus attacked the doctrine that the earth is at the center of the uni-
verse by pointing out that the size of the universe is so immense that to
speak of a center is meaningless. But this counter-argument carried
little weight with his coniemporaries. .

Againsi all these objections to a heliocentric theory, Copernicus and
Kepler had but one overwhelming retort. Each had achieved mathe-
matical simplification and a more harmonious and aesthetically supe-
rior theory. 1f a better mathematical account could be given, then, in
view of the belief that God had designed the world and would clearly
have used the superior theory, the heliocentric theory must be correct.

There are many passages in Copernicus's On the Revolutions of tﬁe
Heavenly Spheres and in Keplet's pumerous writings which bear unmis-
takable testimony to their conviction that they had found the right
theory. Kepler, for example, remarked of his elliptical theory of mo-
tion, “I have attested it as true in my deepest soul and 1 contemplate 1ts
beauty with incredible and ravishing delight.” The very title of Kepler's
work of 1619, The Harmony of the World, and endless paeans to God,
expressing satisfaction with the grandeur of God's mathematical de-
sign, exhibit his CONVICtion. ' o

At first only mathematicians supported the new theory. This is not
surprising. Only a mathematician convinced that the universe was
mathematically and simply designed would have had the mental fort-

tude to disregard the prevailing philosophical, religious, and scientific

_ doctrine that God created an
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counter-arguments and to appreciate the mathematics of such a revolu-
tionary astronomy. Onlyone possessed of unshakable convictions about
the importance of mathematics in the design of the universe would
have dared 1o affirm the new theory against the mass of powerful op-
position it met.

Support for the new theory came from an unexpected development.
Early in the 17th century the telescope was invented and Galileo, upon
hearing of this invention, built one himseif. He then proceeded W
make observations. of the heavens which startled his contemporaries.
He detected four moons of jupiter {we can now observe twelve) and
this discovery showed that a moving planet can have satellites. Galileo
saw- irregular surfaces and mountains on the moon, spots on the sun,
and a bulge around the equator of Saturn (which we now call the rings
of Saturn). Here was further evidence that the planets were like the
earth and certainly not perfect bodies composed of some special ethe-
real substance, as Greek and medieval thinkers had believed. The
Milky Way, which had hitherto appeared to be just a broad band of
light, could be seen with the telescope to be composed of thousands of
stars. Thus there were other suns and presumably other planetary sys-
tems suspended in the heavens. Copernicus had predicted that if
human sight could be enhanced, then man would be able to observe
phases of Venus and Mercury, just as the naked eye can discern phases
of the moon. With his telescope Galileo did view the phases of Venus.
His observations convinced him that the Copernican system was correct
and in the classic Dialogue on the Great World Systems (1632) he defended
it strongly. The new theory won acceptance also because it was simpler
for calculations made by astronomers, geographers, and navigators. By
the middle of the 17th century the scientific world was willing to pro-
ceed on a heliocentric basis and the claim of mathematical laws to truth
was immeasurably strengthened.

T maintain the docrines of the revolution of the earth around the
sun and the daily rotation of the earth in the intellectual atmosphere of
the early 17th century was by no means a casual matter. Galileo's trial
before the Inguisition is well known. The devout Catholic Pascal found
his works on the Index of Prohibited Books because he had the te-
merity to defy the Jesuits by declaring in his Provincial Letters: "It was
also in vain that you did obtain the decree of Rome against Galileo
which condemned his opinion touching the motion of the earth, for
that will not prove that the earth is standing sull. . . .

Copernicus and Kepler accepted unguestioningly the fusion of the
Greek doctrine that nature is designed mathematically and the .atholic
Foignied ihe universe. René Descaries

(1596—1650) set about erecting the new philosophy of science system-
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atically, clearly, and forcefully. Descartes was primarily a philosopher,
second a cosmologist, third a physicist, fourth a biologist, and only fifth
a mathematician, though he is regarded as one of the gems in the
diadem of mathematics. His philosephy is important because it domi-
nated 17th-century thoughi and influenced such giants as Newton and
Leibniz. His primary goal, to find the method of establishing truths in
all fields, he pursued in his basic work, Discourse on the Method of Rightly
Conducting the Reason and Secking for Truth in the Sciences (1637).

Bescartes began the construction of his philosophy by accepting only
those facts that were 10 him beyond doubt. How then did he differen-
tiate between acceptable and unacceptable evidence? In his Rules for the
Direction of the Mind (written in 1628 but published posthumoausly), he
stated: “Concerning the objects we propose to study, we should inves-
tigate not whar others have thought nor what we ourselves conjecture,
but what we can inuuit clearly and evidently or deduce with certainty,
for there is no other way to acquire knowledge.” The mind’s immediate
apprehension of basic, clear, and distinct truths—an intuitive power—
and the deduction of consequences are the essence of his philosophy of
knowledge. There are thus, according to Descartes, only two mental
acts that enable us to arrive at knowledge without any fear of error: in-
tuition and deduction. However, in the Rules he gave greater credence
to intuition: “Intuition is the undoubting conception of a pure and at-
tentive mind, which arises from the light of reason alone, and is more
certain than deduction.”

In the Discourse, he defended the existence of mind and the sure and
indubitable knowledge it possesses. By relying upon fundamental intu-
itions Descartes in the Discourse hastened to prove that God exists. And
then with an argument that surely involves circular reasoning he reas-
sured himself that our intuitions and metheds of deduction must be
sound because God would not deceive us. God he stated is “a substance
that is infinite, eternal, immutable, independent, all-knowing, all-
powerful and by which I myself and everything else . . . have been
created.”

As for truths in mathematics proper, he said in his Meditations (1641),
“I counted as the most certain the truths which I conceived clearly as
regards figures, numbers, and other matters which pertain to arithme-
tic and geometry, and, in general to pure and abstract mathematics.”
“Only the mathematicians contrived to reach certainty and evidence
since they started from what is easiest and simplest.” The concepts apd
truths of mathematics do not come from the senses. _'fhe_y are innate in,

ourminds from birth and it placed there.by God, Sense perception of

material triangles could never give the mind the concept of an ideal ¢ri-
angle. It is equally clear io the mind that the sum of the angles of a tri-
angle must be 180°.
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Descartes turned next to the physical world. We can be sure, he said,
that the intuitions which the mind recognizes clearly and the dedue-
tions from them apply to the physical world. It was clear to him that
God: designed the world mathematically. In his Discourse he affirmed
the existence of “certain laws which God has so established in nature
and of notions which he has impressed in our souls, that once we have
reflected sufficiently upon them, we can no longer doubt their being
accurately observed in all that exists or happens in the world.”

Descartes affirmed further that the laws of nature are invariable
since they are but part of a predetermined mathematical pattern. Even
before publishing his Discourse, Descartes wrote to Father Marin Mer-
senne, a theologian and close associate of mathematicians, on April 15,
1630:

Do not be afraid to proclaim everywhere that God established these
laws in pature just as a sovereign establishes laws in his kingdom. . . .
And just as a king bas more majesty when he is less familiarly known
by his subjects, we judge God's grearness as incomprehensible and do
not think that we are without a king. Oue will tell you that if God es-
tablished these truths, He would be able to change them just as a king
changes his laws; 10 which one should reply that it is possible if His wili
can change. But [ understand these truths as eternal and unvarying in
the same way that I judge God. ‘

Here Descartes denied the prevailing belief that God continually inter-
venes in the functioning of the universe,

To study the physical world Descartes wished to employ only mathe-
matics, for, he said in the Discourse, “Of all those who have hitherto
sought for truth in the Sciences, it has been the mathematicians alone
who have been able to succeed in making any demonstrations, that is to
say, producing reasons which are evident and certain.” In the study of

" the physical world, Descartes was sure mathematics would suffice. He

said in the Principles of Philosophy (1644),

I frankly confess that in respect to corporeal things I know of no other
matter than that . . . which the geometers entitle quantity and take as
being the ohject of their demonstrations. In treating it I consider only
the divisions, the shapes and the movements, and in short admit noth-
ing as true save what can be deduced from those common notions (the
truth of which cannot be doubted) with the same evidence as is secure
in mathematical demonstration. And since, in this manner we can
explain all the phenomena of nature, . . . I do not think that we
should admit any additional physical principles, or that we have the
right o lock for any other.

Descartes was explicit in his Principles that the essence of sclence was
mathematics. He says that he “neither admits nor hopes for any princi-
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ples in Physics other than those which are in Geometry or in Abstract

Mathematics, because thus all phenomena of nature are explained and
sure demonstrations of «them can be given” The objective world is
space solidified or geometry incarnate. Its properties should therefore
be deducible from the first principles of geometry (the term that he
and others of his time used as practically synonymous with mathematics
because the bulk of mathematics was then geometry).

Descartes elaborated on why the world must be accessible to mathe-
matics. He insisted that the most fundamental and reliable properties
of matter are shape, extension, and motion in space and time, all of
which are mathematically describable. Since shape reduces to exten-
sion, Descartes asserted, “Give me extension and motion and 1 shall
construct the universe.” He did add that all physical phenomena are
the result of the mechanical action of molecules moved by forces. But
forces too obeyed invariable mathematical laws.

Since Descartes regarded the external world as consisting only of
matter in motion, how could he account for tastes, smells, colors, and
the qualities of sounds? Here Descartes adopted .an older Greek doc-
trine, Democritus’s doctrine of primary and secondary qualities. The
primary qualities, matter and motion, exist in the physical world; the
secondary qualities, taste, smell, color, warmth, and the pleasantness or
harshness of sounds, are only effects which the primary qualities in-
duce in the sense organs of human beings by the impact of external
atoms on these organs. The real world is the totality of mathematically
expressible motions of objects in space and time and the entire universe
is a great, harmonious, and mathematically designed machine. Science
and in [act any discipline that sought to establish order and measure-
ment were subject to mathematics. He said in Rule IV of his Rules for
the Direction of the Mind:

All the sciences, which have for their end investigations concerning
order and measure, are related to mathernatics, it being of small im-
portance whether this measure be sought in numbers, forms, stars,
sounds, or any other object; that accordingly, there ought to exist a
general science which should explain all that can be known about
order and measure, considered independenty of any application to a
particular subject, and that, indeed, this science has its own proper
name consecrated, by long usage, to wit, mathematics. . . . And a
proof that it far surpasses in facility and importance the sciences which
depend upon it is that it embraces at once 2l the objects to which these
are devoted and a great many others besides. . . .

Descartes’s contributions to mathematics proper did not offer new
truths but rather a powerful methodology which we now call analytic
geometry (Chapter V). From the technical standpoint, analytic geome-
try revolutionized mathematical methodology.
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In science, too, Descartes's contributions, though not of the magni-
tude and broad significance of the work of Copernicus, Kepler, or
Newton, were certainly not negligible. His theory of vortices (Chapter
I1}) was the dominant cosmological theory of the 17th century. He was
the founder of the philosophy of mechanism, that is, the philosophy |
that all natural phenomena including the human body. but excepting
the soul, reduce to thé motions of particles obeying the laws of mechan-
ics. In mechanics proper, he formulated the law of inertia, now known
as Newton’s first law of motion: If no force acis on a body and the body
is at rest, it will remain at rest, and if it s in motion it will continue to
move in a straight line at a constant speed.

Optics—the design of lenses in particular—was another major inter-
est. Indeed part of his Geometry and all of the Diopirics, which he ap-
pended to his Discourse, are devoted to optics. He shares with Wiile-
brord Snell the discovery of the correct law of refraction of light, that
is, how light behaves when it passes through an abrupt change in me-
dium, as from air to glass or water. The Greeks began the mathema-
tization of optics but Descartes’s work established the subject as a math-
ematical science. He made important contributions also to geography,
meteorology, botany, anatomy (in the dissection of animals), zoology,
psychology, and even medicine,

Though Descartes’s philosophical and scientific doctrines subverted
Aristotelianisrn and medieval scholasticism, in one fundamental respect
he was a scholastic: he drew from his own mind propositions about the
nature of being and reality. He believed In a prioti truths and that the
intellect by its own power may arrive at a perfect knowledge of all
things. Thus he stated laws of motion on the basis of a priori reasoning.
{Actually in his biological work and in some other fields he did experi-
ment and drew significant conclusions from his experiments.) How-
ever, by reducing natural phenomena t purely physical happenings,
he did much to rid science of mysticism and occult forces.

Though not as influential in his philosophy, one of the great mathe-
maticians of the 17th century, Blaise Pascal (1623-1662), readily
added his support to the belief that mathematics and the mathematical
laws of science are truths, Unlike Descartes, who spoke of intuitions
clearly acceptable to the mind, Pascal spoke of acceptability to the
heart. Truths must either appeal clearly and distinctly to the heart or
be logical consequences of such truths. In his Pensées he tells us:

Qur_kpowledge of the first principles, such as space, time, motion,
.pumber, 15 as certain as any knowledge we obtain by reasoning. As a
matter of fact, this knowledge provided by our hearts and instinct is
necessarily the basis on which our reasoning has to build s conclu-
sioms. It is just as pointless and absurd for reason to demand proot of
first principles from the heart before agreeing to accept them as it
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would be for the heart to demand an intuition of all the propositions
demaonstrated by reason before agreeing to accept them,

For Pascal, science is the study of God's world. The pursuit of science
for mere enjoyment is wrong. To make enjoyment the chief end of
science s to corrupt research, for then one acquires “a greed or 1u§[ for
learning, a profligate appetite for knowledge.” “Such a study of science

f,@g,'&m springs from a.priori concern-for self as the center of things rather
- LS 1

than 2 concern for seeking out,-wmid-all surrpunding natural phenom-

#ena, the presence of God and His glory.”

Of the seminal thinkers who f'ﬂrgt:d modern mathematics and
science, Galileo Galilei (15364--1642) ranks with Descartes. Of course,
he, too, was certain that nature is mathematically designed, and de-
signed by God. His statement in The Assayer of 1610 is famous:

Philosophy [nature] is written in that great book which ever lies before
our eyes—I mean the universe--but we cannot understand it if we do
not first learn the language and grasp the symbols in which it is writ-
ten. The hook is written in the mathematical language, and the sym-
bols are triangles, circles and other geometrical hgures, with_out wht?se
help it is impossible to comprehend a single word of it; without which
one wanders in vain through a dark labyrinth.

Nature is simple and orderly and its behavior is regular and necessary.
It acts in accordance with perfect and immutable mathematical laws.
Divine reason is the source of the rational in nature. God put into the
world that rigorous mathematical necessity which men reach only la-
boriously, even though their reason is related to God’s. Mathematical
knowledge is therefore not only absolute truth but as sacrosanct as any
line of the Scriptures. Moreover, the study of nature is as devout as the

1.study of the Bible. “Nor does yuirably reveal himself to usin

Nature's actions thah.in the Scriptures’ sacred dictions.”
" Galileo asserted in his Dialogue on the Great World Systems (1632) that
in mathematics man reaches the pinnacle of all possibie knowledge—a
knowledge not inferior to that possessed by the divine intellect. Of
course the divine intellect knows and conceives an infinitely greater
number of mathematical truths than man does but with regard to ob-
jective certainty the few verities known by the human mind are known
as perfectly by man as by God.

Though Galileo was a professor of mathematics and a court i.lla{l.l(:‘-
matician, his major contribution was his many innovations in scientific
method. OF these the most notable was his injunction to abandon physi-

cal explanation, which Aristotle had regarded as the wue goal of

science, and to seek instead mathematical description. The diffqrence
in these two goals is readily illustrated. A body which is dropped falls to
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earth, and in fact falls with increasing velocity. Aristotle and the medi-
eval scientists who followed his methodology sought to account for the
cause of the fall, which presurnably was mechanical. Instead, Galileo
merely described the fall with the mathematical law which, stated in
modern notation, is d =16¢%, where d is the number of feet the body
falls in ¢ seconds. This formula says nothing about why the body falls
and would seem to offer far less than what one would want 1o know
about the phenomenon, But Galileo was sure that the knowledge of na-
ture we should seek was descriptive. He wrote in his Two New Sciences,
“The cause of the acceleration of the motion of falling bodies is not a
necessary part of the investigation.” More generally, he pointed out
that he was going to investigate and demonstrate some of the proper-
ties of motion without regard to what the causes might be. Positive sci-
entific inquiries were 10 be separated from questions of ultimate causa-
tion, and speculaticn about physical causes was to be abandoned.
Galileo may well have put it to scientists: theirs not to reason why,
theirs but to quaniify.

First reactions to this plank of Galileo’s program are likely even today
to be negative. Descriptions of phenomena in terms of formulas hardly
seem 1o be more than a first step. It would seem that the wrue function
of science had really been grasped by the Aristotelians, namely, to
explain why phenomena happened. Even Descartes protested Galileo’s
decision to seek descriptive formulas. He said, “Everything that Galileo
says about bodies falling in empty space is built without foundation: he
ought first to have determined the nature of weight.” Further, said
Descartes, Galileo should reflect about ultimate reasons. But we now
know, in the light of subsequent developments, that Galileo’s decision
to aim for description was the deepest and the most fruitful innovation
that anyone has made about scientific methodology. Its significance,
which will be more fully apparent later, is that it placed science far
more squarely under the aegis of mathematics.

Galileo’s next principle was that any branch of science should be pat-
terned on the model of mathematics. Two essential steps are implied
here. Mathematics starts with axioms, that is, clear, self-evident truths.
From these it proceeds by deductive reasoning to establish new truths.
So any branch of science should start with axioms or principles and
then proceed deductively, Moreover, one should pull out from the
axioms as many consequences as possible. Of course, this plan was ad-
vanced by Aristotle, whe also aimed at deductive structure in science
with the mathematical model in mind.

However, Galileo departed radically from the Greeks, the medieval-
ists, and Descartes in the method of obtaining first principles. The pre-
Galileans and Descartes had believed that the mind supplies the basic
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principles. The mind had but to think about any class of phenomena
and it would immediately recognize fundamental truths. This power of
the mind was clearly evidenced in mathematics. Axioms such as equals
added to equals give equals and two points determine a line suggested
themselves immediately in thinking about number or geometrical fig-
ures and were indubitable truths. So too did the Greeks find some
physical principles equally appealing. That all objects in the universe
should have a natural place was no more than fitting. The state of rest
seemed clearly more natural than the state of motion. It seemed in-
dubitable, too, that to put and keep bodies in motion force must be
applied. To believe that the mind supplies fundamental principles does
not deny that observation might help us to reach these principles, But
observation merely evokes the correct principles just as the sight of a
familiar face may call to mind facts about that person.

These savants, as Galilen put it, first decided how the world should
function inaccordance with their preconceived principles. Galileo decided
that in physics as opposed to mathematics first principles must come
from experience and experimentation. The way to obtain correct and
basic principles is to pay attention to what narare says rather than what
the mind prefers. He openly criticized scientists and philosophers who
accepted laws which conformed to their preconceived ideas as to how
_I}gﬂu.cmmust-—bchug._ Nature did not first make men’s brains, he said,
and then arrange the world so that it would be acceptable to human in-
tellects. 'To the medievalists who kept tepeating Aristotle and debating
what he meant, Galileo addressed the criticism that knowledge comes
from observation and not from books. It was useless to debate about
Aristotle. Those who did he called paper scientists who fancied that
seience was 1o be studied like the Aeneid or the Odyssey or by collation of
texts. “When we have the decree of nature, authority goes for nothing.”

Of course, some Renaissance thinkers and Galileo’s contemporary
Francis Bacon had also arrived at the conclusion that experimen-
tation was necessary. In this particular plank of his new method Gal-
ileo was not ahead of afl others. Yet the modernist Descartes did not
grant the wisdom of Galileo’s reliance upon experimentation. The facts
of the senses, Descartes said, can only lead to delusion. Reason pene-
trates such delusions. From the innate general principles supplied by
the mind we can deduce particular phenomena of nature and under-
stand them. Actually, as we noted earlier, in much of his scientific work
Descartes did experiment and require that theory fit facts, but in his
philosophy he was still tied to truths of the mind.

A few mathematical physicists agreed with Galileo that reason alone
could not ensure correct physical principles. Christian Huygens actu-
ally criticized Descartes. The English physicists also attacked pure ra-
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tonalism. Robert Hooke (1685-1703) said that the members of the
Royal Society of London “having before their eyes so many fatal in-
stances of the errors and falsehoods in which the greater part of man-
kind had wandered because they relied upon the strength of human
reason alone, have now begun to correct all hypotheses by sense,”

Of course, Galileo realized that one may glean an incorrect principle
from experimentation and that as a consequence the deductions from
it could be incorrect. Hence he proposed and presumably did use ex-
periments to check the conclusions of his reasonings as well as o ac-
quire basic principles. However, the extent to which Galilec experi-
mented is certainly open to question. Some of his presumed
experiments are sometimes called Gedanken (German for “thoughts”)
experiments, that is, he imagined what must happen were one o ex-
periment. Nevertheless, his doctrine that physical principles must rest
on experience and experiments is revolutionary and crucial. Galileo
himself had no doubt that some true principles among those used by
God to fashion the universe could still be reached by the mind, but by
opening the door to the role of experience he allowed the devil of
doubt to slip in. If the basic principles of science must come from expe-
rience, why not the axioms of mathematics? This question did not trou-
ble Galileo or his successors undl 1800. Mathematics still enjoyed a
privileged position.

In his scientific work Galileo concentrated on matter and motion, He
recognized clearly and independently of Descartes the principle of in-
ertia, now called Newton's first law of motion. He was successful also in
obtaining the laws of motion of bodies that rise straight up and fall,
bodies sliding along inclined planes, and projectiles. The motion of this
last class he showed was parabolic. In sum, he obtained the laws of mo-
tion of terrestrial objects. Though, as in every major innovation, prede-
cessors can be found, no one was so clear as Galileo about the concepts
and principles that were to guide scientific inquiry, and no one demon-
strated their application in so simple and effective a manner.

Radically innovative for his time, Galileo's philosophy and methodol-
ogy of science were prefatory to the accomplishments of Isaac Newton,
who was born in the year that Galileo died.






