6.6

THE FUNDAMENTAL
THEOREM OF
CALCULUS

This derivation of the Fundamental Theorem of Calculus

is taken from George Simmons delightful text,  "Calculus

with  Analytic Geometry" (2nd ed.) printed by McGraw Hill
in 1996. The pages come from the range 206-209.

As our main achievement so far in this chapter, we have formulated a rather com- -
plicated definition of the definite integral of a continnons function as the limit
of approximating sums,

. 3 . H .
[roa= tm > fanax m

‘We have also considerad several examples of the use of this definition in calcu-

lating the values of certain simple integrals, such as
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These calculations have had two purposes: to emphasize the essential namure of
the integral by giving students some direct experience with approximating sums,
and also to sugpest the severe limitations of this method as a practical tool for
evaluating integrals, Thus, for exarmple, how can we possibly use limits of sums
to find the numerical valnes of such complicated integrals as
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This is clearly out of the question, so where do we go from here? What 13 evi-
dently needed is a much more efficient and powerful methed of computing inte-
grals, and we find this method in the ideas of Newton and Leibniz.

The Newton-Teibniz approach ta the problem of calculating the integral (1)
depends on an idea that seems paradoxical ar first sight. In order to solve this
problem, we replace it by an apparently harder problem. Inatead of asking for
the fixed area on the left in Fig. 6.19, we ask for the variable ares produced when
the edge on the right side of the figure is considered to be moveable, so that the
areq is a function of x, as suggested on the right in Fig. 6.19. If this area func-
tion is denoted by A(x), then clearly A(a) = 0 and A(b) is the fixed area on the
left in the figure. Our aim is to find an explicit formaula for A(x), and then to de-
termine the desired fixed area by setting x = b. There are several steps in this
process, which we consider separately for the sake of clarity.

STEr 1 We begin by establishing the crucial fact that

44 _
. f(x). (4

This says that the rare of change of the area A with respect to x is equal to the
length of the right edge of the region. To prove this statement, we must appeal
lo the definition of the derivative,

dA = Alx + Ax) — Alx)
dx Ao Ax |

Now A(x) is the area under the graph between a and x, and A(x - Ax) is the area
between @ and x -+ Ax. Hence the numerator A(x + Ax) — A(x) is the area be-
t“fﬂcn x and x = Ax (see the shaded region in Fig. 6.20), It is casy to see that
this area is exactly equal to the area ol a rectangle with the same buse whose
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height is f(%). where 5 is o shitably chosen point between X and x - Ax.” This
snables us {o complete the proof of (4) as follows:
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since f(¥) is continuous. To explain the Jast siep here 1 & bit more detail, we
point out that Ax —» 0 i5 equivalent to X b Ax s x; singe X 16 caught between x
and x 4 Ax, we also have X — x, and the continuity of the functiol now yields
the conclusion that f(x) — f(x)-

grep 2 Equation (4) makes it possible for us to acheve our goal of finding a
formula for the arca function Alx). The reasoning goes this way- By (4), A(x) is
one of the antiderivatives of fix), But if F(x) is any antiderivative of fx) then
we know from Chapier 5 that

Alx) = Flx) + ¢ (8)

for some value of the constant ¢. To determine ¢, we put X = g m (5)and obtain
Alg) = F(a) -+ o tut sinee A(a) = 0, this yields ¢ = —F(a). Therefore

Al = Fley — Fla) ()

is the desired formula.
grep 3 All that remains is to observe that

[* ooy d = A = Fi®) = F@,
hy (6) and the mearing of A

We summarize our conclusions by formally stating the fundamental Theoret

of Calcolus:

If flx) is cOnHniGaHs on d clpsed interval 12, b), and if Fix) is any antideri parive of £x),
so that (@/dx) F(x} = Jixy or equivalently

[ 00 ax = Fea M

then

[* 05y dc = by = F1@) ®

This theorem transforms fhe difficult problem of evaluaiing definite integrals by
calonluting limits of sums into the much easier problem of finding antideriva-
tives. To find the value of [4 F(x) dx, we therefore no 1onger have to think about
cums at all; we merely find an antiderivative F(x) in any way we can—by -

*Wlhen this stawement i expressgd in formal Janguage, it is culled the First Mean Value Theorem of
Integral Caleulis, Lposely speaking, if the top of the rectangle 1 ot just the tight level, then the part
of the nren protrading ubave it exaclly balances the deficiency below it
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‘spection, rontine caleulation, ingenious calculation, or looking it up in a book—
and then compute the number F(b) — Fla).

For instance, in Section 6.5 we used a good deal of algebraic ingenuity to ob-
tain the forraulas (2). Now, with the aid of the Fundamental Theorem, we see
these fortmulas as obvious consequences of the following simple facts:

fxdx—
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A og. — ;F_:i : 3 = x‘l‘
f,:c—d_r—u3, an f:c dx a
More generally, for any exponent # > 0 we clearly have

h pnt | an+l xatl
J’ Xy = — —— because fx" dx = .
it nt+tl #nl

Remark 1 In the process of working problems, it is oftefi convenient to use the
bracker symbaol,

b .
F(x)] = F(b} — Fla), (9)

which ig read “F(x) bracket o, b." This symbol means exactly whal (9) says il
does: To find its value, we write the value of F(x) when x has the upper value b,
and subtract the value of F(x) when x has the lower value ¢ For example,
x*]4 =42 — 32 = 16 — 9 = 7. By using this notation, (8} can be written in the
form : '

Jr h
[/ 10 ax = F(x)} .

Remark 2 It should be clear from this discussion that any antiderivative of f(x)
will do in (8). In case students ars in doubt about this, they should recall that if
F(x) is one antiderivative, then any other can be obtained by adding a switable
constant ¢ to form F(x) 4+ ¢; and since

Fx) + c]b = [F(B) + ¢] — [F@ + ] = F8) — Fla,

I

the constant ¢ has no effect on the result. We may therefore ignore constants of
integration when fnding antiderivatives for the purpose of computing definite in-
tegrals. (Nevertheless, these constants of integration remain indispensable when
we are working with differential equations, as we saw in Section 3.4.)

Example 1 Evaluate each of the following definite integrals:

(a) E: x* dx; ) J;Lﬁ %; {c) f;? V% dx; () f: (x — 130 2.
x

Solution Tn each case an antiderivative is easy to find by inspection:

3 2
(a) f_l it = %x{l [32 —-{—1] = E'

!

() ﬁ'ﬁ dx —2\/”‘] =24 — 1) = 6;
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