The Power Rule

Part 1: Differentials

The <u>Differential</u>: If $\frac{dy}{dx} = f'(x)$, then the differential dy = f'(x) dx.

Example 1: Find the differential dy if:

a.)
$$y = x^7 + 3x^2 + 2$$

b.)
$$y = x^3 e^x$$

Part 2: The Power Rule

Recall the power rule for derivatives: $\frac{d}{dx}[u(x)]^n = n[u(x)]^{n-1}u'(x)$. This leads to the power rule for integration where $\int n[u(x)]^{n-1}u'(x) dx = [u(x)]^n + C$.

2 12.02 Outline.nb

Power rule for integration: Assuming that $n \neq -1$,

$$\int [u(x)]^n u'(x) dx = \frac{[u(x)]^{n+1}}{n+1} + C$$

or if u = u(x), then

$$\int u^n \, \mathrm{d} \mathrm{u} = \tfrac{u^{n+1}}{n+1} + C$$

Example 2: $\int (3x^3 + 1)^4 9x^2 dx$

Example 3: $\int (3 x^2 - 4)^6 x dx$

Example 4: $\int \frac{x \, dx}{(x^2+1)^3}$

Example 5: $\int 7 x^3 \sqrt{x^4 + 6} \ dx$

Example 6: $\int (x^2 + 1)^2 dx$

Example 7:	7 · (5 <i>xdx</i>
	7. J	$(x^2-1)^{13}$

Example 8:
$$\int \frac{x^3-1}{(x^4-4x)^3} dx$$

Example 9:
$$\int \frac{x^2+1}{\sqrt{x^3+3x+10}} dx$$

Part 3: Applications (time permitting)

Example 10: A new firm predicts that the number of franchises will grow at a rate $\frac{dn}{dt} = 9\sqrt{t+1}$ where *t* is in years, $0 \le t \le 10$. If there are presently three franchises (after zero years), how many franchises can be expected in eight years?