Section 9.9

Applications of the Derivative

Part 1: Business Applications

Example 1: If the cost in dollars to produce x items is given by $C(x)=50+48 x+x^{3}$, find the marginal cost function $\overline{\mathrm{MC}}(x)$.

Example 2: Suppose that the cost function for a commodity is $C(x)=300+6 x+\frac{1}{20} x^{2}$ (in dollars).
a.) Find and interpret $\overline{\mathrm{MC}}(8)$.
b.) Find and interpret $C(8)-C(7)$.

Example 3: Suppose that the total revenue function for a commodity is $R(x)=36 x-0.01 x^{2}$ (in dollars).
a.) Find and interpret $R(100)$
b.) Find and interpret $\overline{\mathrm{MR}}(100)$
c.) Find and interpret $R(100)-R(99)$

Example 4: If the profit from the sale of x items is given by $P(x)=16 x-0.1 x^{2}-100$ a.) Graph $\overline{\mathrm{MP}}(x)$
b.) What level of production and sales will give a marginal profit of zero?
c.) At what level of production is the profit maximized?

Example 5: If the daily of cost per unit associated with producing a product by the Caterpillar (CAT) Corp is $10+2 x$ and if the price for each unit is $\$ 50$ on the competitive market, what is the maximum daily profit that can be expected from this product?

