Derivative Rules

Part 1: The Power Rule

a.) f(x) = 1 (graphically)

b.) g(x) = x (graphically)

c.) $h(x) = x^2$ (using the definition)

d.) $i(x) = x^3$ (using the definition)

e.) $j(x) = x^n$ (following the pattern from above)

Derivative Rule: The power rule

If $f(x) = x^n$, where *n* is a real number, then $f'(x) = n \cdot x^{n-1}$

Example 2: Find the derivatives of:

- a.) $f(x) = x^4$
- b.) $g(x) = x^{-4}$

Notation: We use a number of notations to refer to the derivative of y = f(x). They are, but not limited to:

- 1.) f'(x), read "f prime of x" or "the derivative of f with respect to x"
- 2.) f', read, "f prime"

- 3.) y', read, "y prime" 4.) $\frac{dy}{dx}$, read, "dy dx" or "dy by dx." 5.) $\frac{d}{dx} f(x)$ or $\frac{d}{dx} f$, read "ddx of f of x" or "ddx of f"

Example 3: Find the derivatives of:

a.)
$$y = x^{\frac{2}{3}}$$

b.)
$$\frac{d}{dx} \sqrt{x}$$

c.) If
$$y = \frac{1}{\sqrt[3]{x}}$$
, find $\frac{dy}{dx}$.

4 09.04 Outline.nb

Example 4 : Find the equation of the tangent line to $y = x^2$ when $x = 3$
Example 5: Derivatives with constants. Does the power rule still apply?
Find the derivative of $y = \pi x^7$.

Derivative Rule: The coefficient rule

If $f(x) = c \cdot u(x)$ where c is a constant and u(x) is a differentiable function of x, then $f'(x) = c \cdot u'(x)$.

Example 6: Find:

a.)
$$\frac{d}{dx} 7 \sqrt[4]{x}$$

b.)
$$(4 x^5)'$$

c.) If
$$n = \frac{5}{v^{\frac{2}{3}}}$$
, find $\frac{dn}{dv}$

6 09.04 Outline.nb

Derivative Rule: sums and differences
If $f(x) = u(x) \pm v(x)$, where u and v are differentiable functions if x , then $f'(x) = u'(x) \pm v'(x)$.
□ <u>proof</u> .

Part 2: Applications

Example 7: Suppose the revenue from the sale of x items is modeled by $R(x) = 300 \ x - 0.02 \ x^2$.

a.) Find \overline{MR} when x = 40.

b.) Interpret the result from part (a.).

Example 8: Suppose the cost from the sale of x items is $C(x) = 40500 + 190 x + 0.2 x^2$.

a.) Find the average cost function $\overline{C}(x) = \frac{C(x)}{x}$

b.) Find the instantaneous ROC of the average cost function.

c.) When does the instantaneous ROC of the average cost function (from (b.)) equal zero?

d.) Find $\overline{MC}(x)$ and $\overline{C}(x)$ at the zero found in (c.).