The Definite Integral and the Fundamental Theorem of Calculus

Part 1: The Definite Integral

To find the area under f(x) (perhaps it makes the most sense to assume $f \ge 0$) on the interval [a, b], we evalu-

Area =
$$\lim_{n\to\infty} \sum_{i=1}^n f(x_i) \Delta x$$

We formalize this quantity through the definition of the definite integral given below.

Definition: The definite integral

If f is continuous on the interval [a, b], then the area under f is given by:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

 $\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \, \Delta x$ where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i \Delta x$ (the right end point of the i^{th} subinterval; each subinterval having equal width).

Example 1: Use the definition of the definite integral to write $\int_{-3}^{2} (4x-7) dx$ as the limit of sums.

2 13 02 Outline.nb

Now, the notation for the indefinite integral should lead to the obvious question: what is the relationship between the indefinite integral and the definite?

Part 2: The Fundamental Theorem of Calculus

<u>Definition</u>: The Fundamental Theorem of Calculus Let f be continuous on the interval [a, b]. Then, the definite integral exists and: $\int_a^b f(x) \, dx = F(b) - F(a)$ where F is any antiderivative of f. That is, F' = f.

Example 2: $\int_0^1 x \, dx$ (Note: This involves finding the area of the triangle that we worked three ways in the previous section).

Example	3:	$\int_{0}^{1} x^{3}$	dx
---------	----	----------------------	----

Example 4:
$$\int_1^9 \sqrt{x} dx$$

Example 5:
$$\int_0^5 4 \sqrt[3]{x^2} \ dx$$

Example 6: $\int_{2}^{4} (x^2 + 2)^3 x \, dx$

Example 7: $\int_{-1}^{2} x \sqrt[3]{x^2 - 5} \ dx$

Example 8: Suppose that a vending machine service company models its income by assuming that money flows continuously into the machines with an annual rate of flow of $f(t) = 120 e^{0.01 t}$ where f gives the income in \$1,000/yr. Find the total income for the company over the first three years.